Back to the list
Congress: ECR25
Poster Number: C-22836
Type: Poster: EPOS Radiologist (educational)
Authorblock: F. Vaccarino, M. Parillo, V. Cirimele, G. D'Amone, C. C. Quattrocchi; Rovereto/IT
Disclosures:
Federica Vaccarino: Nothing to disclose
Marco Parillo: Nothing to disclose
Vincenzo Cirimele: Nothing to disclose
Giulia D'Amone: Nothing to disclose
Carlo Cosimo Quattrocchi: Nothing to disclose
Keywords: MR physics, Neuroradiology brain, MR, Technical aspects, Education and training, Pathology
References

[1]           S. Haller, E.M. Haacke, M.M. Thurnher, F. Barkhof, Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications, Radiology 299 (2021) 3–26. https://doi.org/10.1148/radiol.2021203071.

[2]           S. Liu, S. Buch, Y. Chen, H.-S. Choi, Y. Dai, C. Habib, J. Hu, J.-Y. Jung, Y. Luo, D. Utriainen, M. Wang, D. Wu, S. Xia, E.M. Haacke, Susceptibility Weighted Imaging: Current Status and Future Directions, NMR Biomed 30 (2017) 10.1002/nbm.3552. https://doi.org/10.1002/nbm.3552.

[3]           E.M. Haacke, M. Makki, Y. Ge, M. Maheshwari, V. Sehgal, J. Hu, M. Selvan, Z. Wu, Z. Latif, Y. Xuan, O. Khan, J. Garbern, R.I. Grossman, Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging, J Magn Reson Imaging 29 (2009) 537–544. https://doi.org/10.1002/jmri.21676.

[4]           G.P. Arrighini, M. Maestro, R. Moccia, Magnetic Properties of Polyatomic Molecules. I. Magnetic Susceptibility of H2O, NH3, CH4, H2O2, The Journal of Chemical Physics 49 (1968) 882–889. https://doi.org/10.1063/1.1670155.

[5]           J.F. Schenck, Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI, Ann N Y Acad Sci 649 (1992) 285–301. https://doi.org/10.1111/j.1749-6632.1992.tb49617.x.

[6]           J.H. Duyn, J. Schenck, Contributions to magnetic susceptibility of brain tissue, NMR Biomed 30 (2017). https://doi.org/10.1002/nbm.3546.

[7]           A. Deistung, A. Schäfer, F. Schweser, U. Biedermann, R. Turner, J.R. Reichenbach, Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength, Neuroimage 65 (2013) 299–314. https://doi.org/10.1016/j.neuroimage.2012.09.055.

[8]           D.A. Yablonskiy, E.M. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime, Magn Reson Med 32 (1994) 749–763. https://doi.org/10.1002/mrm.1910320610.

[9]           J. Sedlacik, A. Rauscher, J.R. Reichenbach, Quantification of modulated blood oxygenation levels in single cerebral veins by investigating their MR signal decay, Z Med Phys 19 (2009) 48–57. https://doi.org/10.1016/j.zemedi.2008.07.005.

[10]         C. de M. Rimkus, F.S. Otsuka, D.M. Nunes, K.T. Chaim, M.C.G. Otaduy, Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology, Diagnostics 14 (2024) 1362. https://doi.org/10.3390/diagnostics14131362.

[11]         A.M. Halefoglu, D.M. Yousem, Susceptibility weighted imaging: Clinical applications and future directions, World J Radiol 10 (2018) 30–45. https://doi.org/10.4329/wjr.v10.i4.30.

[12]         G.B. Chavhan, P.S. Babyn, B. Thomas, M.M. Shroff, E.M. Haacke, Principles, techniques, and applications of T2*-based MR imaging and its special applications, Radiographics 29 (2009) 1433–1449. https://doi.org/10.1148/rg.295095034.

[13]         E.M. Haacke, Y. Xu, Y.-C.N. Cheng, J.R. Reichenbach, Susceptibility weighted imaging (SWI), Magn Reson Med 52 (2004) 612–618. https://doi.org/10.1002/mrm.20198.

[14]         E.M. Haacke, S. Mittal, Z. Wu, J. Neelavalli, Y.-C.N. Cheng, Susceptibility-weighted imaging: technical aspects and clinical applications, part 1, AJNR Am J Neuroradiol 30 (2009) 19–30. https://doi.org/10.3174/ajnr.A1400.

[15]         Y. Béjot, K. Yaffe, Ageing Population: A Neurological Challenge, Neuroepidemiology 52 (2019) 76–77. https://doi.org/10.1159/000495813.

[16]         D.S. Reich, C.F. Lucchinetti, P.A. Calabresi, Multiple Sclerosis, N Engl J Med 378 (2018) 169–180. https://doi.org/10.1056/NEJMra1401483.

[17]         W.I. McDonald, A. Compston, G. Edan, D. Goodkin, H.P. Hartung, F.D. Lublin, H.F. McFarland, D.W. Paty, C.H. Polman, S.C. Reingold, M. Sandberg-Wollheim, W. Sibley, A. Thompson, S. van den Noort, B.Y. Weinshenker, J.S. Wolinsky, Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis, Ann Neurol 50 (2001) 121–127. https://doi.org/10.1002/ana.1032.

[18]         W.J. Brownlee, J.K. Swanton, D.R. Altmann, O. Ciccarelli, D.H. Miller, Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria, J Neurol Neurosurg Psychiatry 86 (2015) 584–585. https://doi.org/10.1136/jnnp-2014-308675.

[19]         T.F. Runia, N. Jafari, R.Q. Hintzen, Application of the 2010 revised criteria for the diagnosis of multiple sclerosis to patients with clinically isolated syndromes, Eur J Neurol 20 (2013) 1510–1516. https://doi.org/10.1111/ene.12243.

[20]         A.J. Solomon, D.N. Bourdette, A.H. Cross, A. Applebee, P.M. Skidd, D.B. Howard, R.I. Spain, M.H. Cameron, E. Kim, M.K. Mass, V. Yadav, R.H. Whitham, E.E. Longbrake, R.T. Naismith, G.F. Wu, B.J. Parks, D.M. Wingerchuk, B.L. Rabin, M. Toledano, W.O. Tobin, O.H. Kantarci, J.L. Carter, B.M. Keegan, B.G. Weinshenker, The contemporary spectrum of multiple sclerosis misdiagnosis: A multicenter study, Neurology 87 (2016) 1393–1399. https://doi.org/10.1212/WNL.0000000000003152.

[21]         E.S. Aliaga, F. Barkhof, MRI mimics of multiple sclerosis, Handb Clin Neurol 122 (2014) 291–316. https://doi.org/10.1016/B978-0-444-52001-2.00012-1.

[22]         K.E. Hammond, M. Metcalf, L. Carvajal, D.T. Okuda, R. Srinivasan, D. Vigneron, S.J. Nelson, D. Pelletier, Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron, Ann Neurol 64 (2008) 707–713. https://doi.org/10.1002/ana.21582.

[23]         H. Lassmann, Multiple sclerosis pathology: evolution of pathogenetic concepts, Brain Pathol 15 (2005) 217–222. https://doi.org/10.1111/j.1750-3639.2005.tb00523.x.

[24]         E.C. Tallantyre, J.E. Dixon, I. Donaldson, T. Owens, P.S. Morgan, P.G. Morris, N. Evangelou, Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions, Neurology 76 (2011) 534–539. https://doi.org/10.1212/WNL.0b013e31820b7630.

[25]         P. Damier, E.C. Hirsch, Y. Agid, A.M. Graybiel, The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry, Brain 122 ( Pt 8) (1999) 1421–1436. https://doi.org/10.1093/brain/122.8.1421.

[26]         S.T. Schwarz, M. Afzal, P.S. Morgan, N. Bajaj, P.A. Gowland, D.P. Auer, The “swallow tail” appearance of the healthy nigrosome - a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T, PLoS One 9 (2014) e93814. https://doi.org/10.1371/journal.pone.0093814.

[27]         Z. Cheng, N. He, P. Huang, Y. Li, R. Tang, S.K. Sethi, K. Ghassaban, K.K. Yerramsetty, V.K. Palutla, S. Chen, F. Yan, E.M. Haacke, Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: An application to Parkinson’s disease, Neuroimage Clin 25 (2020) 102103. https://doi.org/10.1016/j.nicl.2019.102103.

[28]         M.A. Schmidt, T. Engelhorn, F. Marxreiter, J. Winkler, S. Lang, S. Kloska, P. Goelitz, A. Doerfler, Ultra high-field SWI of the substantia nigra at 7T: reliability and consistency of the swallow-tail sign, BMC Neurol 17 (2017) 194. https://doi.org/10.1186/s12883-017-0975-2.

[29]         P. Gao, P.-Y. Zhou, G. Li, G.-B. Zhang, P.-Q. Wang, J.-Z. Liu, F. Xu, F. Yang, X.-X. Wu, Visualization of nigrosomes-1 in 3T MR susceptibility weighted imaging and its absence in diagnosing Parkinson’s disease, Eur Rev Med Pharmacol Sci 19 (2015) 4603–4609.

[30]         P. Mahlknecht, F. Krismer, W. Poewe, K. Seppi, Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease, Mov Disord 32 (2017) 619–623. https://doi.org/10.1002/mds.26932.

[31]         Z. Cheng, J. Zhang, N. He, Y. Li, Y. Wen, H. Xu, R. Tang, Z. Jin, E.M. Haacke, F. Yan, D. Qian, Radiomic Features of the Nigrosome-1 Region of the Substantia Nigra: Using Quantitative Susceptibility Mapping to Assist the Diagnosis of Idiopathic Parkinson’s Disease, Front Aging Neurosci 11 (2019) 167. https://doi.org/10.3389/fnagi.2019.00167.

[32]         S. Shams, D. Fällmar, S. Schwarz, L.-O. Wahlund, D. van Westen, O. Hansson, E.-M. Larsson, S. Haller, MRI of the Swallow Tail Sign: A Useful Marker in the Diagnosis of Lewy Body Dementia?, AJNR Am J Neuroradiol 38 (2017) 1737–1741. https://doi.org/10.3174/ajnr.A5274.

[33]         P. Feraco, C. Gagliardo, G. La Tona, E. Bruno, C. D’angelo, M. Marrale, A. Del Poggio, M.C. Malaguti, L. Geraci, R. Baschi, B. Petralia, M. Midiri, R. Monastero, Imaging of Substantia Nigra in Parkinson’s Disease: A Narrative Review, Brain Sciences 11 (2021) 769. https://doi.org/10.3390/brainsci11060769.

[34]         M.C. Kruer, N. Boddaert, S.A. Schneider, H. Houlden, K.P. Bhatia, A. Gregory, J.C. Anderson, W.D. Rooney, P. Hogarth, S.J. Hayflick, Neuroimaging features of neurodegeneration with brain iron accumulation, AJNR Am J Neuroradiol 33 (2012) 407–414. https://doi.org/10.3174/ajnr.A2677.

[35]         R.P. Guillerman, The eye-of-the-tiger sign, Radiology 217 (2000) 895–896. https://doi.org/10.1148/radiology.217.3.r00dc31895.

[36]         C.-L. Chang, C.-M. Lin, Eye-of-the-Tiger sign is not Pathognomonic of Pantothenate Kinase-Associated Neurodegeneration in Adult Cases, Brain Behav 1 (2011) 55–56. https://doi.org/10.1002/brb3.8.

[37]         K.D. Sethi, S.H. Mehta, J.C. Morgan, Defining the Eye-of-the-Tiger Sign, JAMA Neurol 72 (2015) 606. https://doi.org/10.1001/jamaneurol.2015.0144.

GALLERY