Back to the list
Congress: ECR24
Poster Number: C-19105
Type: EPOS Radiologist (scientific)
Authorblock: G. Herpe1, V. Rabeau2, P-A. Lentz2, S. Luzi2, A. Parpaleix3, M. Lederlin2; 1Poitiers/FR, 2Rennes/FR, 3paris/FR
Disclosures:
Guillaume Herpe: Advisory Board: INCEPTO-MEDICAL
Valentin Rabeau: Nothing to disclose
Pierre-Axel Lentz: Nothing to disclose
Stephanie Luzi: Nothing to disclose
Alexandre Parpaleix: CEO: MILVUE
Mathieu Lederlin: Nothing to disclose
Keywords: Emergency, Conventional radiography, Decision analysis, Economics
References

Ahluwalia M, Abdalla M, Sanayei J, et al. The Subgroup Imperative: Chest Radiograph Classifier Generalization Gaps in Patient, Setting, and Pathology Subgroups. Radiology: Artificial Intelligence. 2023;5(5):e220270. doi:10.1148/ryai.220270

Ahn JS, Ebrahimian S, McDermott S, et al. Association of Artificial Intelligence–Aided Chest Radiograph Interpretation With Reader Performance and Efficiency. JAMA Netw Open. 2022;5(8):e2229289. doi:10.1001/jamanetworkopen.2022.29289

Al aseri Z. Accuracy of chest radiograph interpretation by emergency physicians. Emerg Radiol. 2009;16(2):111-114. doi:10.1007/s10140-008-0763-9

Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. 2019;291(1):196-202. doi:10.1148/radiol.2018180921

Bennani S, Regnard NE, Ventre J, et al. Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs. Radiology. 2023;309(3):e230860. doi:10.1148/radiol.230860

Çalli± E, Sogancioglu E, Van Ginneken B, Van Leeuwen KG, Murphy K. Deep learning for chest X-ray analysis: A survey. Medical Image Analysis. 2021;72:102125. doi:10.1016/j.media.2021.102125

Chung JH, Duszak R, Hemingway J, Hughes DR, Rosenkrantz AB. Increasing Utilization of Chest Imaging in US Emergency Departments From 1994 to 2015. Journal of the American College of Radiology. 2019;16(5):674-682. doi:10.1016/j.jacr.2018.11.011

Dominioni L, Rotolo N, Mantovani W, et al. A population-based cohort study of chest x-ray screening in smokers: lung cancer detection findings and follow-up. BMC Cancer. 2012;12(1):18. doi:10.1186/1471-2407-12-18

Gatt ME. Chest radiographs in the emergency department: is the radiologist really necessary? Postgraduate Medical Journal. 2003;79(930):214-217. doi:10.1136/pmj.79.930.214

Goo JM. Triaging: Another Vital Application of the Deep Learning Technique on Chest Radiographs at the Emergency Department. Radiology. 2023;306(2):e223112. doi:10.1148/radiol.223112

Homayounieh F, Digumarthy S, Ebrahimian S, et al. An Artificial Intelligence–Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study. JAMA Netw Open. 2021;4(12):e2141096. doi:10.1001/jamanetworkopen.2021.41096

Huisman M, Hannink G. The AI Generalization Gap: One Size Does Not Fit All. Radiology: Artificial Intelligence. 2023;5(5):e230246. doi:10.1148/ryai.230246

Hurt B, Yen A, Kligerman S, Hsiao A. Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps. Journal of Thoracic Imaging. 2020;35(5):285-293. doi:10.1097/RTI.0000000000000505

Hwang EJ, Goo JM, Nam JG, Park CM, Hong KJ, Kim KH. Conventional Versus Artificial Intelligence-Assisted Interpretation of Chest Radiographs in Patients With Acute Respiratory Symptoms in Emergency Department: A Pragmatic Randomized Clinical Trial. Korean J Radiol. 2023;24(3):259. doi:10.3348/kjr.2022.0651

Hwang EJ, Nam JG, Lim WH, et al. Deep Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology. 2019;293(3):573-580. doi:10.1148/radiol.2019191225

Irmici G, Cè M, Caloro E, et al. Chest X-ray in Emergency Radiology: What Artificial Intelligence Applications Are Available? Diagnostics. 2023;13(2):216. doi:10.3390/diagnostics13020216

Irvin J, Rajpurkar P, Ko M, et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. AAAI. 2019;33(01):590-597. doi:10.1609/aaai.v33i01.3301590

Jang S, Song H, Shin YJ, et al. Deep Learning–based Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest Radiographs. Radiology. 2020;296(3):652-661. doi:10.1148/radiol.2020200165

Kao CY, Lin CY, Chao CC, et al. Automated Radiology Alert System for Pneumothorax Detection on Chest Radiographs Improves Efficiency and Diagnostic Performance. Diagnostics (Basel). 2021;11(7):1182. doi:10.3390/diagnostics11071182

Khader F, Han T, Müller-Franzes G, et al. Artificial Intelligence for Clinical Interpretation of Bedside Chest Radiographs. Radiology. 2023;307(1):e220510. doi:10.1148/radiol.220510

Kim JH, Kim JY, Kim GH, et al. Clinical Validation of a Deep Learning Algorithm for Detection of Pneumonia on Chest Radiographs in Emergency Department Patients with Acute Febrile Respiratory Illness. JCM. 2020;9(6):1981. doi:10.3390/jcm9061981

Kolossváry M, Raghu VK, Nagurney JT, Hoffmann U, Lu MT. Deep Learning Analysis of Chest Radiographs to Triage Patients with Acute Chest Pain Syndrome. Radiology. 2023;306(2):e221926. doi:10.1148/radiol.221926

Lind Plesner L, Müller FC, Brejnebøl MW, et al. Commercially Available Chest Radiograph AI Tools for Detecting Airspace Disease, Pneumothorax, and Pleural Effusion. Radiology. 2023;308(3):e231236. doi:10.1148/radiol.231236

Majkowska A, Mittal S, Steiner DF, et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology. 2020;294(2):421-431. doi:10.1148/radiol.2019191293

Munera F, Infante JC. Deep Learning for Chest Radiography in the Emergency Department. Radiology. 2019;293(3):581-582. doi:10.1148/radiol.2019192079

Park SH, Han K, Jang HY, et al. Methods for Clinical Evaluation of Artificial Intelligence Algorithms for Medical Diagnosis. Radiology. 2023;306(1):20-31. doi:10.1148/radiol.220182

Park S, Lee SM, Kim N, et al. Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy. Eur Radiol. 2019;29(10):5341-5348. doi:10.1007/s00330-019-06130-x

Parpaleix A, Parsy C, Cordari M, Mejdoubi M. Assessment of a combined musculoskeletal and chest deep learning-based detection solution in an emergency setting. European Journal of Radiology Open. 2023;10:100482. doi:10.1016/j.ejro.2023.100482

Philipsen RHHM, Sánchez CI, Maduskar P, et al. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs. Sci Rep. 2015;5(1):12215. doi:10.1038/srep12215

Rudolph J, Huemmer C, Ghesu FC, et al. Artificial Intelligence in Chest Radiography Reporting Accuracy: Added Clinical Value in the Emergency Unit Setting Without 24/7 Radiology Coverage. Invest Radiol. 2022;57(2):90-98. doi:10.1097/RLI.0000000000000813

Rudolph J, Schachtner B, Fink N, et al. Clinically focused multi-cohort benchmarking as a tool for external validation of artificial intelligence algorithm performance in basic chest radiography analysis. Sci Rep. 2022;12(1):12764. doi:10.1038/s41598-022-16514-7

Santosh KC, Antani S. Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? IEEE Trans Med Imaging. 2018;37(5):1168-1177. doi:10.1109/TMI.2017.2775636

Shelmerdine SC, Martin H, Shirodkar K, Shamshuddin S, Weir-McCall JR. Can artificial intelligence pass the Fellowship of the Royal College of Radiologists examination? Multi-reader diagnostic accuracy study. BMJ. Published online December 21, 2022:e072826. doi:10.1136/bmj-2022-072826

Sugibayashi T, Walston SL, Matsumoto T, Mitsuyama Y, Miki Y, Ueda D. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur Respir Rev. 2023;32(168):220259. doi:10.1183/16000617.0259-2022

Sung J, Park S, Lee SM, et al. Added Value of Deep Learning–based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study. Radiology. 2021;299(2):450-459. doi:10.1148/radiol.2021202818

Taylor AG, Mielke C, Mongan J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Med. 2018;15(11):e1002697. doi:10.1371/journal.pmed.1002697

Topff L, Ranschaert ER, Bartels-Rutten A, et al. Artificial Intelligence Tool for Detection and Worklist Prioritization Reduces Time to Diagnosis of Incidental Pulmonary Embolism at CT. Radiology: Cardiothoracic Imaging. 2023;5(2):e220163. doi:10.1148/ryct.220163

van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Comparison of Commercial AI Software Performance for Radiograph Lung Nodule Detection and Bone Age Prediction. Radiology. 2024;310(1):e230981. doi:10.1148/radiol.230981

Wang H, Gu H, Qin P, Wang J. CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks. Xie H, ed. PLoS ONE. 2020;15(11):e0242013. doi:10.1371/journal.pone.0242013

Wu JT, Wong KCL, Gur Y, et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. JAMA Netw Open. 2020;3(10):e2022779. doi:10.1001/jamanetworkopen.2020.22779

GALLERY