1. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004 Dec;59(12):1061-9. doi: 10.1016/j.crad.2004.07.008. PMID: 15556588.
2. Awe AM, Rendell VR, Lubner MG, Winslow ER. Texture Analysis: An Emerging Clinical Tool for Pancreatic Lesions. Pancreas. 2020 Mar;49(3):301-312. doi: 10.1097/MPA.0000000000001495. PMID: 32168248; PMCID: PMC7135958.
3. Renard F, Guedria S, Palma N, Vuillerme N. Variability and reproducibility in deep learning for medical image segmentation. Sci Rep. 2020 Aug 13;10(1):13724. doi: 10.1038/s41598-020-69920-0. PMID: 32792540; PMCID: PMC7426407.
4. Adelsmayr G, Janisch M, Kaufmann-Bühler AK, Holter M, Talakic E, Janek E, Holzinger A, Fuchsjäger M, Schöllnast H. CT texture analysis reliability in pulmonary lesions: the influence of 3D vs. 2D lesion segmentation and volume definition by a Hounsfield-unit threshold. Eur Radiol. 2023 May;33(5):3064-3071. doi: 10.1007/s00330-023-09500-8. Epub 2023 Mar 22. PMID: 36947188; PMCID: PMC10121537.
5. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014 Mar;55(3):414-22. doi: 10.2967/jnumed.113.129858. Epub 2014 Feb 18. PMID: 24549286.
6. Yamashita R, Perrin T, Chakraborty J, Chou JF, Horvat N, Koszalka MA, Midya A, Gonen M, Allen P, Jarnagin WR, Simpson AL, Do RKG. Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol. 2020 Jan;30(1):195-205. doi: 10.1007/s00330-019-06381-8. Epub 2019 Aug 7. PMID: 31392481; PMCID: PMC7127865.
7. Yan Y, Zhang D. Multi-scale U-like network with attention mechanism for automatic pancreas segmentation. PLoS One. 2021 May 27;16(5):e0252287. doi: 10.1371/journal.pone.0252287. PMID: 34043732; PMCID: PMC8158888.
8. Kumar H, DeSouza SV, Petrov MS. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review. Comput Methods Programs Biomed. 2019 Sep;178:319-328. doi: 10.1016/j.cmpb.2019.07.002. Epub 2019 Jul 3. PMID: 31416559.
9. van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21), e104–e107. `https://doi.org/10.1158/0008-5472.CAN-17-0339 <https://doi.org/10.1158/0008-5472.CAN-17-0339>`_
10. Orel VE, Ashykhmin A, Golovko T, Rykhalskyi O, Orel VB. Texture Analysis of Tumor and Peritumoral Tissues Based on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Hybrid Imaging in Patients With Rectal Cancer. J Comput Assist Tomogr. 2021 Nov-Dec 01;45(6):820-828. doi: 10.1097/RCT.0000000000001218. PMID: 34469907.
11. Csutak C, Stefan PA, Lenghel LM, Morosanu CO, Lupean RA, Simonca L, Mihu CM, Lebovici A. Differentiating High-Grade Gliomas from Brain Metastases at Magnetic Resonance: The Role of Texture Analysis of the Peritumoral Zone. Brain Sci. 2020 Sep 16;10(9):638. doi: 10.3390/brainsci10090638. PMID: 32947822; PMCID: PMC7565295.
12. Chen K, Sui C, Wang Z, Liu Z, Qi L, Li X. Habitat radiomics based on CT images to predict survival and immune status in hepatocellular carcinoma, a multi-cohort validation study. Transl Oncol. 2025 Feb;52:102260. doi: 10.1016/j.tranon.2024.102260. Epub 2025 Jan 2. PMID: 39752907; PMCID: PMC11754828.