Congress:
ECR25
Poster Number:
C-12662
Type:
Poster: EPOS Radiologist (scientific)
Authorblock:
H. Velling, M. Brix, M. Bode, E. Lammentausta; Oulu/FI
Disclosures:
Heidi Velling:
Nothing to disclose
Mikael Brix:
Nothing to disclose
Michaela Bode:
Nothing to disclose
Eveliina Lammentausta:
Nothing to disclose
Keywords:
Artificial Intelligence, MR physics, MR, Physics, Technology assessment, Artifacts, Quality assurance
- Almansour H, Herrmann J, Gassenmaier S, et al. Deep Learning Reconstruction for Accelerated Spine MRI: Prospective Analysis of Interchangeability. Radiology. 2023;306(3):e212922. doi:10.1148/radiol.212922
- Johnson PM, Lin DJ, Zbontar J, et al. Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI. Radiology. 2023;307(2):e220425. doi:10.1148/radiol.220425
- Kiryu S, Akai H, Yasaka K, et al. Clinical Impact of Deep Learning Reconstruction in MRI. Radiographics. 2023;43(6):e220133. doi:10.1148/rg.220133
- Rastogi A, Brugnara G, Foltyn-Dumitru M, et al. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Lancet Oncol. 2024;25(3):400-410. doi:10.1016/S1470-2045(23)00641-1
- Yoo H, Yoo RE, Choi SH, et al. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI. Eur Radiol. 2023;33(12):8656-8668. doi:10.1007/s00330-023-09918-0