[1] Selvaggi, Giovanni, and Giorgio V. Scagliotti. 2005. ‘Management of Bone Metastases in Cancer: A Review’. Critical Reviews in Oncology/Hematology 56 (3): 365–78. https://doi.org/10.1016/j.critrevonc.2005.03.011.
[2] Coleman, R. E. 2001. ‘Metastatic Bone Disease: Clinical Features, Pathophysiology and Treatment Strategies’. Cancer Treatment Reviews 27 (3): 165–76. https://doi.org/10.1053/ctrv.2000.0210.
[3] Coleman, Robert E. 2006. ‘Clinical Features of Metastatic Bone Disease and Risk of Skeletal Morbidity’. Clinical Cancer Research 12 (20): 6243–49. https://doi.org/10.1158/1078-0432.CCR-06-0931.
[4] Costa, Luis, Xavier Badia, Edward Chow, Allan Lipton, and Andrew Wardley. 2008. ‘Impact of Skeletal Complications on Patients’ Quality of Life, Mobility, and Functional Independence’. Supportive Care in Cancer 16 (8): 879–89. https://doi.org/10.1007/s00520-008-0418-0.
[5] Tsukamoto, Shinji, Akira Kido, Yasuhito Tanaka, Giancarlo Facchini, Giuliano Peta, Giuseppe Rossi, and Andreas F. Mavrogenis. 2021. ‘Current Overview of Treatment for Metastatic Bone Disease’. Current Oncology 28 (5): 3347–72. https://doi.org/10.3390/curroncol28050290.
[6] Groves, Ashley M., Clare J. Beadsmoore, Heok K. Cheow, Kottekkattu K. Balan, Helen M. Courtney, Stephen Kaptoge, Thida Win, Srinivasan Harish, Philip W. P. Bearcroft, and Adrian K. Dixon. 2006. ‘Can 16-Detector Multislice CT Exclude Skeletal Lesions during Tumour Staging? Implications for the Cancer Patient’. European Radiology 16 (5): 1066–73. https://doi.org/10.1007/s00330-005-0042-z.
[7] Kalogeropoulou, Christina, Anna Karachaliou, and Peter Zampakis. 2009. ‘Radiologic Evaluation Of Skeletal Metastases: Role Of Plain Radiographs And Computed Tomography’. In Bone Metastases: A Translational and Clinical Approach, edited by Dimitrios Kardamakis, Vassilios Vassiliou, and Edward Chow, 119–36. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-9819-2_6.
[8] O’Sullivan, Gerard J, Fiona L Carty, and Carmel G Cronin. 2015. ‘Imaging of Bone Metastasis: An Update’. World Journal of Radiology 7 (8): 202–11. https://doi.org/10.4329/wjr.v7.i8.202.
[9] Ha, Ji Y., Kyung N. Jeon, Kyungsoo Bae, and Bong H. Choi. 2017. ‘Effect of Bone Reading CT Software on Radiologist Performance in Detecting Bone Metastases from Breast Cancer’. The British Journal of Radiology 90 (1072): 20160809. https://doi.org/10.1259/bjr.20160809.
[10] Dembrower, Karin, Alessio Crippa, Eugenia Colón, Martin Eklund, and Fredrik Strand. 2023. ‘Artificial Intelligence for Breast Cancer Detection in Screening Mammography in Sweden: A Prospective, Population-Based, Paired-Reader, Non-Inferiority Study’. The Lancet Digital Health 5 (10): e703–11. https://doi.org/10.1016/S2589-7500(23)00153-X.
[11] Ladbury, Colton, Arya Amini, Ameish Govindarajan, Isa Mambetsariev, Dan J. Raz, Erminia Massarelli, Terence Williams, Andrei Rodin, and Ravi Salgia. 2023. ‘Integration of Artificial Intelligence in Lung Cancer: Rise of the Machine’. Cell Reports Medicine 4 (2): 100933. https://doi.org/10.1016/j.xcrm.2023.100933.
[12] Chmelik, Jiri, Roman Jakubicek, Petr Walek, Jiri Jan, Petr Ourednicek, Lukas Lambert, Elena Amadori, and Giampaolo Gavelli. 2018. ‘Deep Convolutional Neural Network-Based Segmentation and Classification of Difficult to Define Metastatic Spinal Lesions in 3D CT Data’. Medical Image Analysis 49 (October):76–88. https://doi.org/10.1016/j.media.2018.07.008.