Congress:
ECR25
Poster Number:
C-24072
Type:
Poster: EPOS Radiologist (scientific)
Authorblock:
A. I. Majeed; Islamabad/PK
Disclosures:
Ayesha Isani Majeed:
Nothing to disclose
Keywords:
Artificial Intelligence, Lung, Digital radiography, Computer Applications-Detection, diagnosis, Diagnostic procedure, Education, Education and training, Sustainability
- Fong SJ, Dey N, Chaki J, Fong SJ, Dey N, Chaki J. An introduction to COVID-19. Artif Intell Coronavirus O u t b r e a k 2 0 2 0 : 1 - 2 2 .https://doi.org/10.1007%2F978- 981-15-5936-5_1
- Harris M, Qi A, Jeagal L, Torabi N, Menzies D, Korobitsyn A, et al. A systematic review of the diagnostic accuracy of artificial intelligence based computer programs to analyze chest x-rays for pulmonary t u b e r c u l o s i s. P L o S O n e2 0 1 9 ; 1 4 ( 9 ) : e 0 2 2 1 3 3 9 .https://doi.org/10.1371/journal.pon e.0221339.
- Paranjape K, Schinkel M, Panday RN, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ 2019;5(2):e16048. https://doi.org/10.2196/16048
- Sapci AH, Sapci HA. Artificial intelligence education and tools for medical and health informatics students [systematic review]. JMIR Med Educ 2020;6(1):e19285. https://doi.org/10.2196/19285.
- Stevens RH, Lopo AC. Artificial neural network comparison of expert and novice problem-solving strategies. Proc Annu Symp Comput Appl Med Care 1994;64-8.
- Siemens G, Long P. Penetrating the fog: Analytics in learning and education. EDUCAUSE Review 2011;46(5):30-32