1. The Royal College of Radiologists. Clinical radiology census reports [Internet]. [cited2024 Sep 2]. Available from:https://www.rcr.ac.uk/media/qs0jnfmv/rcr-census_clinical-radiology-workforce-census_2022.pdf2. Association of American Medical Colleges. The Complexities of Physician Supplyand Demand: Projections From 2019 to 2034 [Internet]. Prepared for the AAMC byIHS Markit Ltd; 2021 June [cited 2024 Sep 2]. Available from:https://www.aamc.org/media/54681/download?attachment3. Radiological Society of North America. Global radiologist shortage [Internet]. 2022May [cited 2024 Sep 2]. Available from:https://www.rsna.org/news/2022/may/global-radiologist-shortage4. Richards M, Maskell G, Halliday K, Allen M. Diagnostics: a major priority for the NHS.Future healthcare journal. 2022 Jul;9(2):133.5. Winder M, Owczarek AJ, Chudek J, Pilch-Kowalczyk J, Baron J. Are we overdoing it?Changes in diagnostic imaging workload during the years 2010–2020 including theimpact of the SARS-CoV-2 pandemic. InHealthcare 2021 Nov 16 (Vol. 9, No. 11, p.1557). MDPI.6. Ueda D, Matsumoto T, Ehara S, et al., Artificial intelligence-based model to classifycardiac functions from chest radiographs: a multi-institutional, retrospective modeldevelopment and validation study. The Lancet Digital Health. 2023 Aug1;5(8):e525-33.7. Rao B, Zohrabian V, Cedeno P, Saha A, Pahade J, Davis MA. Utility of artificialintelligence tool as a prospective radiology peer reviewer—Detection of unreportedintracranial hemorrhage. Academic radiology. 2021 Jan 1;28(1):85-93.8. Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy K. Deep learningfor chest X-ray analysis: A survey. Medical Image Analysis. 2021 Aug 1;72:102125.9. Shirokikh B, Dalechina A, Shevtsov A, et al. Systematic clinical evaluation of a deeplearning method for medical image segmentation: radiosurgery application. IEEEJournal of Biomedical and Health Informatics. 2022 Feb 25;26(7):3037-46.10. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance againsthealth-care professionals in detecting diseases from medical imaging: a systematicreview and meta-analysis. The lancet digital health. 2019 Oct 1;1(6):e271-97.11. Gorenstein L, Soffer S, Apter S, Konen E, Klang E. AI in radiology: is it the time forrandomized controlled trials?. European Radiology. 2023 Jun;33(6):4223-5.12. Bennani S, Regnard NE, Ventre J, et al. Using AI to improve radiologist performancein detection of abnormalities on chest radiographs. Radiology. 2023 Dec12;309(3):e230860.13. Ahn JS, Ebrahimian S, McDermott S, et al. Association of Artificial Intelligence–AidedChest Radiograph Interpretation With Reader Performance and Efficiency. JAMANetwork Open. 2022 Aug 1;5(8):e2229289-.14. Eng DK, Khandwala NB, Long J, et al. Artificial intelligence algorithm improvesradiologist performance in skeletal age assessment: a prospective multicenterrandomized controlled trial. Radiology. 2021 Dec;301(3):692-9.15. Yacoub B, Varga-Szemes A, Schoepf UJ, et al. Impact of artificial intelligenceassistance on chest CT interpretation times: a prospective randomized study.American Journal of Roentgenology. 2022 Nov 15;219(5):743-51.16. Abadia AF, Yacoub B, Stringer N, et al. Diagnostic accuracy and performance ofartificial intelligence in detecting lung nodules in patients with complex lung disease:a noninferiority study. Journal of Thoracic Imaging. 2022 May 10;37(3):154-61.