Back to the list
Congress: ECR24
Poster Number: C-23452
Type: EPOS Radiographer (scientific)
Authorblock: M. Koshizuka1, H. Watanabe1, Y. Takeda1, Y. Ezawa1, K. Saito2, N. Hayashi1, M. Sato1, T. Ogura1, M. Shimosegawa1; 1Maebashi/JP, 2Saitama/JP
Disclosures:
Momoko Koshizuka: Nothing to disclose
Haruyuki Watanabe: Nothing to disclose
Yuto Takeda: Nothing to disclose
Yuina Ezawa: Nothing to disclose
Kazuho Saito: Nothing to disclose
Norio Hayashi: Nothing to disclose
Mitsuru Sato: Nothing to disclose
Toshihiro Ogura: Nothing to disclose
Masayuki Shimosegawa: Nothing to disclose
Keywords: Breast, Mammography, Technology assessment, Image verification
References

[1] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021;71:7–33.

[2] Independent UK Panel on Breast Cancer Screening The benefits and harms of breast cancer screening: An independent review. Lancet. 2012;380:1778–1786.

[3] Programme, NBS Guidance for Breast Screening Mammographers 3rd ed. Public Health England, UK, 2017.

[4] EUREF. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis 4th ed. European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services, 2006.

[5] Watanabe, H., Hayashi, S., Kondo, Y. et al. Quality control system for mammographic breast positioning using deep learning. Sci Rep 13, 7066, 2023.

[6] Lee RS, Gimenez F, Hoogi A, Rubin D. Curated breast imaging subset of DDSM. Cancer Imaging Arch. 2016;6:66.

GALLERY