[1] Nagayama, Y., Emoto, T., Hayashi, H., Kidoh, M., Oda, S., Nakaura, T., Sakabe, D., Funama, Y., Tabata, N., Ishii, M. and Yamanaga, K., 2023. Coronary stent evaluation by CTA: image quality comparison between super-resolution deep learning reconstruction and other reconstruction algorithms. American Journal of Roentgenology, 221(5), pp.599-610, https://doi.org/10.2214/AJR.23.29506
[2] Verdun F.R., Racine D., Ott J.G., Tapiovaara M.J., Toroi P., Bochud F.O., Veldkamp W.J.H., Schegerer A., Bouwman R.W., Hernandez Giron I., Marshall N.W., Edyvean S., Image quality in CT: From physical measurements to model observers (2015), Physica Medica, 31(8), pp.823-843, https://doi.org/10.1016/j.ejmp.2015.08.007.
[3] Greffier J, Pastor M, Si-Mohamed S, Goutain-Majorel C, Peudon-Balas A, Bensalah M, Frandon J, Beregi J-P, Dabli D, (2024) Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study, Diagnostic and Interventional Imaging 105(3), pp.110-117, https://doi.org/10.1016/j.diii.2023.10.004
[4] Kerns J.R., Pylinac: Image analysis for routine quality assurance in radiotherapy (2023), Journal of Open Source Software, 8(92), 6001, https://doi.org/10.21105/joss.06001
[5] Friedman S.N., Fung G.S.K, Siewerdsen J.H., Tsui B.M.W (2013), A simple approach to measure computed tomography (CT) modulation transfer function (MTF) and noise-power spectrum (NPS) using the American College of Radiology (ACR) accreditation phantom, Med. Phys. 40, 051907-1 -051907-9, http://dx.doi.org/10.1118/1.4800795