Back to the list
Congress: ECR25
Poster Number: C-12644
Type: Poster: EPOS Radiologist (scientific)
Authorblock: F. Schmitz1, H. Voigtländer1, H. Jang2, H-P. Schlemmer1, H-U. Kauczor1, S. Sedaghat1; 1Heidelberg/DE, 2Davis/US
Disclosures:
Fabian Schmitz: Nothing to disclose
Hendrik Voigtländer: Nothing to disclose
Hyungseok Jang: Nothing to disclose
Heinz-Peter Schlemmer: Nothing to disclose
Hans-Ulrich Kauczor: Nothing to disclose
Sam Sedaghat: Nothing to disclose
Keywords: Artificial Intelligence, Musculoskeletal soft tissue, Oncology, MR, Imaging sequences, Segmentation, Staging, Cancer
References

[1] M. Pizzato, G. Collatuzzo, C. Santucci, M. Malvezzi, P. Boffetta, A. Comandone, F. Levi, C. La Vecchia, P. Bertuccio, E. Negri, Mortality patterns of soft-tissue sarcomas worldwide up to 2018, with predictions for 2025, Eur J Cancer Prev 32(1) (2023) 71-80.

[2] L. Guillou, J.M. Coindre, F. Bonichon, B.B. Nguyen, P. Terrier, F. Collin, M.O. Vilain, A.M. Mandard, V. Le Doussal, A. Leroux, J. Jacquemier, H. Duplay, X. Sastre-Garau, J. Costa, Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma, J Clin Oncol 15(1) (1997) 350-62.

[3] Yang, F.J. Frassica, L. Fayad, D.P. Clark, K.L. Weber, Analysis of nondiagnostic results after image-guided needle biopsies of musculoskeletal lesions, Clin Orthop Relat Res 468(11) (2010) 3103-11.

[4] F. Schmitz, H. Voigtländer, H. Jang, H.-P. Schlemmer, H.-U. Kauczor, S. Sedaghat, Predicting the Malignancy Grade of Soft Tissue Sarcomas on MRI Using Conventional Image Reading and Radiomics, Diagnostics (Basel) 14(19) (2024) 2220. 

[5] S. Zhang, K. Regan, J. Najera, M.W. Grinstaff, M. Datta, H.T. Nia, The peritumor microenvironment: physics and immunity, Trends Cancer 9(8) (2023) 609-623.

[6] H.T. Hu, S.L. Shen, Z. Wang, Q.Y. Shan, X.W. Huang, Q. Zheng, X.Y. Xie, M.D. Lu, W. Wang, M. Kuang, Peritumoral tissue on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis, Abdom Radiol (NY) 43(12) (2018) 3324-3330.

[7] W. Jiang, R. Meng, Y. Cheng, H. Wang, T. Han, N. Qu, T. Yu, Y. Hou, S. Xu, Intra- and Peritumoral Based Radiomics for Assessment of Lymphovascular Invasion in Invasive Breast Cancer, J Magn Reson Imaging 59(2) (2024) 613-625.

[8] F. Zhao, S. Ahlawat, S.J. Farahani, K.L. Weber, E.A. Montgomery, J.A. Carrino, L.M. Fayad, Can MR imaging be used to predict tumor grade in soft-tissue sarcoma?, Radiology 272(1) (2014) 192-201.

[9] Crombe, P.J. Marcellin, X. Buy, E. Stoeckle, V. Brouste, A. Italiano, F. Le Loarer, M. Kind, Soft-Tissue Sarcomas: Assessment of MRI Features Correlating with Histologic Grade and Patient Outcome, Radiology 291(3) (2019) 710-721.

[10] Chhabra, O. Ashikyan, C. Slepicka, N. Dettori, H. Hwang, A. Callan, R.R. Sharma, Y. Xi, Conventional MR and diffusion-weighted imaging of musculoskeletal soft tissue malignancy: correlation with histologic grading, Eur Radiol 29(8) (2019) 4485-4494.

[11]  L.H. Gimber, E.A. Montgomery, C.D. Morris, E.A. Krupinski, L.M. Fayad, MRI characteristics associated with high-grade myxoid liposarcoma, Clin Radiol 72(7) (2017) 613 e1-613 e6.

[12] Y.C.S. Ramon, M. Sese, C. Capdevila, T. Aasen, L. De Mattos-Arruda, S.J. Diaz-Cano, J. Hernandez-Losa, J. Castellvi, Clinical implications of intratumor heterogeneity: challenges and opportunities, J Mol Med (Berl) 98(2) (2020) 161-177.

[13] H. Wang, H. Chen, S. Duan, D. Hao, J. Liu, Radiomics and Machine Learning With Multiparametric Preoperative MRI May Accurately Predict the Histopathological Grades of Soft Tissue Sarcomas, J Magn Reson Imaging 51(3) (2020) 791-797.

[14] L. Zhang, Z. Ren, Comparison of CT and MRI images for the prediction of soft-tissue sarcoma grading and lung metastasis via a convolutional neural networks model, Clin Radiol 75(1) (2020) 64-69.

GALLERY