Back to the list
Congress: ECR25
Poster Number: C-17860
Type: Poster: EPOS Radiologist (scientific)
Authorblock: X. Zhang1, G. Zhang1, H. Sun1, Z. Jin1, J. Yan1, M. Xu1, L. Xu2, J. Zhang1, X. Bai1; 1Beijing/CN, 2Hangzhou/CN
Disclosures:
Xiaoxiao Zhang: Nothing to disclose
Gumuyang Zhang: Nothing to disclose
Hao Sun: Nothing to disclose
Zhengyu Jin: Nothing to disclose
Jing Yan: Nothing to disclose
Min Xu: Nothing to disclose
Lili Xu: Nothing to disclose
Jiahui Zhang: Nothing to disclose
Xin Bai: Nothing to disclose
Keywords: Abdomen, Kidney, Urinary Tract / Bladder, CT, Technology assessment, Calcifications / Calculi
References
  1. Alatab S, Pourmand G, El Howairis MF et al (2016) National profles of urinary calculi: a comparison between developing and developed worlds.
  2. Iran J Kidney Dis 10(2):51–61Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344
  3. Nakamura Y, Higaki T, Tatsugami F et al (2020) Possibility of deep learning in medical imaging focusing improvement of computed tomography image quality. J Comput Assist Tomogr 44(2):161–167
  4. Higaki T, Nakamura Y, Zhou J et al (2020) Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 27(1):82–87
  5. Van Stiphout JA, Driessen J, Koetzier LR et al (2022) The efect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. Eur Radiol 32(5):2921–2929
GALLERY