Congress:
ECR25
Poster Number:
C-10076
Type:
Poster: EPOS Radiographer (educational)
DOI:
10.26044/ecr2025/C-10076
Authorblock:
G. D. G. Trippia1, T. Teng1, D. Alves Stefano Larrea1, P. Santos Justino1, F. Eduarda Cerqueira Dos Santos1, C. S. D. Reis2, D. P. Meireles1; 1São Paulo/BR, 2Lausanne/CH
Disclosures:
Giovana De Godoy Trippia:
Nothing to disclose
Tiago Teng:
Nothing to disclose
Daniela Alves Stefano Larrea:
Nothing to disclose
Paula Santos Justino:
Nothing to disclose
Fernanda Eduarda Cerqueira Dos Santos:
Nothing to disclose
Claudia Sa Dos Reis:
Nothing to disclose
Danilo Peron Meireles:
Nothing to disclose
Keywords:
Artificial Intelligence, Neuroradiology brain, Vascular, CT, Computer Applications-Detection, diagnosis, Education and training, Image verification
- World Health Organization. WHO | Global Health Estimates 2021 Summary tables. Geneva, Switzerland; June 2024. Available in: http://www.who.int/healthinfo/global_burden_disease/en/.
- LOBO, P. G. G. A. et al. Epidemiologia do acidente vascular cerebral isquêmico no Brasil no ano de 2019, uma análise sob a perspectiva da faixa etária / Epidemiology of the ischemic cerebrovascular accident in Brazil in the year of 2019, an analysis from an age group perspective. Brazilian Journal of Health Review, v. 4, n. 1, p. 3498–3505, 2021.
- BRASIL. Ministério da Saúde. Secretaria de Atenção Especializada à Saúde. Secretaria de Ciência, Tecnologia, Inovação e Complexo da Saúde. Portaria Conjunta SAES/SECTICS nº 29, de 12 de dezembro de 2023. Aprova o Protocolo Clínico e Diretrizes Terapêuticas do Acidente Vascular Cerebral Isquêmico Agudo. Diário Oficial da União: seção 1, Brasília, DF, 15 dez. 2023.
- MCBENEDICT, B. et al. Cerebrovascular Disease Mortality Trends in Brazil: An In-Depth Joinpoint Analysis. Cureus, v. 15, n. 9, p. e45845, 1 set. 2023.
- Protocolo Clínico e Diretrizes Terapêuticas do Acidente Vascular Cerebral Isquêmico Agudo. [s.l: s.n.]. Available in: https://www.gov.br/conitec/pt-br/midias/consultas/relatorios/2021/20211230_relatorio_recomendacao_avci_agudo_cp110.pdf.
- DHAR, R. Automated quantitative assessment of cerebral edema after ischemic stroke using CSF volumetrics. Neuroscience Letters, v. 724, p. 134879, abr. 2020.
- RAMESH, A. et al. Artificial intelligence in medicine. Annals of The Royal College of Surgeons of England, v. 86, n. 5, p. 334–338, 1 set. 2004.
- CHOI, R. Y. et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science & Technology, v. 9, n. 2, p. 14–14, 28 jan. 2020.
- SHAPIRO, S. C. Encyclopedia of artificial intelligence. New York: Wiley Interscience Publication, 1987.
- ZHANG, H. et al. A radiomics feature-based machine learning models to detect brainstem infarction (RMEBI) may enable early diagnosis in non-contrast enhanced CT. European Radiology, v. 33, n. 2, p. 1004–1014, 28 set. 2022.
- CURRIE, G. et al. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Journal of Medical Imaging and Radiation Sciences, v. 50, n. 4, out. 2019.
- CHANDRABHATLA, A. S. et al. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies. PubMed, v. 12, n. 11, 30 maio 2023.
- ALAYA, I.B. et al. Automatic triaging of acute ischemic stroke patients for reperfusion therapies using Artificial Intelligence methods and multiple MRI features: A review. Clinical Imaging, v. 104, p. 109992, 1 dez. 2023.
- ALAYA, I. B. et al. Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions. Clinical Imaging, out. 2021.
- BHARDWAJ, A. et al. Machine learning based reanalysis of clinical scores for distinguishing between ischemic and hemorrhagic stroke in low resource setting. Journal of Stroke and Cerebrovascular Diseases, v. 31, n. 9, p. 106638, set. 2022.
- YU, Y. et al. Improving Ischemic Stroke Care With MRI and Deep Learning Artificial Intelligence. Topics in Magnetic Resonance Imaging, v. 30, n. 4, p. 187–195, ago. 2021.
- KOOPMAN, M. S. et al. Comparison of three commonly used CT perfusion software packages in patients with acute ischemic stroke. v. 11, n. 12, p. 1249–1256, 1 dez. 2019.
- HILBERT, A. et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. v. 115, p. 103516–103516, 1 dez. 2019.
- WOUTERS, A. et al. Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging. Stroke, v. 53, n. 2, p. 569–577, 1 fev. 2022.
- SHETH, S. A. et al. Machine Learning–Enabled Automated Determination of Acute Ischemic Core From Computed Tomography Angiography. Stroke, v. 50, n. 11, p. 3093–3100, nov. 2019.
- MURRAY, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2020). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of neurointerventional surgery, 12(2), 156–164. https://doi.org/10.1136/neurintsurg-2019-015135
- GUPTA, R. et al. An East Coast Perspective on Artificial Intelligence and Machine Learning. v. 30, n. 4, p. 467–478, 1 nov. 2020.
- MARTÍNEZ-GUTIÉRREZ, J. C. et al. Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times. JAMA Neurology, v. 80, n. 11, p. 1182–1182, 1 nov. 2023.
- SHLOBIN, N. A. et al. Artificial Intelligence for Large-Vessel Occlusion Stroke: A Systematic Review. World Neurosurgery, v. 159, p. 207-220.e1, 1 mar. 2022.
- TEO, Y. H. et al. Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning : A Systematic Review and Meta-analysis. Clinical neuroradiology, v. 31, n. 4, p. 1121–1130, dez. 2021.