Back to the list
Congress: ECR25
Poster Number: C-26894
Type: Poster: EPOS Radiologist (scientific)
Authorblock: M. Palermo, M. Salfi, A. Caruso, I. G. Blandini, U. Solarino, S. Migliore, P. V. Foti, S. Palmucci, A. Basile; Catania/IT
Disclosures:
Monica Palermo: Nothing to disclose
Massimiliano Salfi: Nothing to disclose
Andrea Caruso: Nothing to disclose
Ivan Giovanni Blandini: Nothing to disclose
Ugo Solarino: Nothing to disclose
Serena Migliore: Nothing to disclose
Pietro Valerio Foti: Nothing to disclose
Stefano Palmucci: Nothing to disclose
Antonio Basile: Nothing to disclose
Keywords: Breast, CAD, Ultrasound, CAD, Computer Applications-Detection, diagnosis, Segmentation, Cancer
References
  • Choi, R. Y., Coyner, A. S., Kalpathy-Cramer, J., Chiang, M. F. & Campbell, J. P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 9, 14 (2020).
  • Mahesh, B. Machine Learning Algorithms - A Review. Int. J. Sci. Res. IJSR 9, 381–386 (2020).
  • Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).
  • Lyu, S.-Y. et al. Diagnostic value of artificial intelligence automatic detection systems for breast BI-RADS 4 nodules. World J. Clin. Cases 10, 518–527 (2022).
  • Lai, Y.-C. et al. Evaluation of physician performance using a concurrent-read artificial intelligence system to support breast ultrasound interpretation. The Breast 65, 124–135 (2022).
  • Qian, L. et al. Application of deep learning to predict underestimation in ductal carcinoma in situ of the breast with ultrasound. Ann. Transl. Med. 9, 295–295 (2021).
  • Wang H, Li X, Yuan Y, Tong Y, Zhu S, Huang R, Shen K, Guo Y, Wang Y, Chen X. Association of machine learning ultrasound radiomics and disease outcome in triple negative breast cancer. Am J Cancer Res. (2022).
  • Rodrigues, P. S. Breast Ultrasound Image. Mendeley https://doi.org/10.17632/WMY84GZNGW.1 (2017).
  • Park, H. J. et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound. Medicine (Baltimore) 98, e14146 (2019).
  • Moon, W. K. et al. Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput. Methods Programs Biomed. 190, 105361 (2020).
GALLERY