[1] Younossi Z, Tacke F, Arrese M et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019; 69(6): 2672-2682.
[2] Wong V W, Wong G L, Choi P C et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59(7): 969-974.
[3] Anstee Q M, Targher G, Day C P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 2013; 10(6): 330-344.
[4] Noureddin M, Ntanios F, Malhotra D et al. Predicting NAFLD prevalence in the United States using National Health and Nutrition Examination Survey 2017-2018 transient elastography data and application of machine learning. Hepatol Commun 2022; 6(7): 1537-1548.
[5] Kleiner D E, Brunt E M, Van Natta M et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-1321.
[6] Machado M V, Cortez-Pinto H. Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol 2013; 58(5): 1007-1019.
[7] Idilman I S, Aniktar H, Idilman R et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267(3): 767-775.
[8] Tang A, Desai A, Hamilton G et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 2015; 274(2): 416-425.
[9] Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156(5): 1264-1281.e1264.
[10] Davison B A, Harrison S A, Cotter G et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J Hepatol 2020; 73(6): 1322-1332.
[11] Tamaki N, Ajmera V, Loomba R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. Nat Rev Endocrinol 2022; 18(1): 55-66.
[12] Chan W K, Nik Mustapha N R, Wong G L, Wong V W, Mahadeva S. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population. United European Gastroenterol J 2017; 5(1): 76-85.
[13] Oeda S, Takahashi H, Imajo K et al. Accuracy of liver stiffness measurement and controlled attenuation parameter using FibroScan(®) M/XL probes to diagnose liver fibrosis and steatosis in patients with nonalcoholic fatty liver disease: a multicenter prospective study. J Gastroenterol 2020; 55(4): 428-440.
[14] Hu R, Wu B, Wang C et al. Assessment of transient elastography in diagnosing MAFLD and the early effects of sleeve gastrectomy on MAFLD among the Chinese population. Int J Surg 2024; 110(4): 2044-2054.
[15] Ferraioli G, Tinelli C, Lissandrin R et al. Interobserver reproducibility of the controlled attenuation parameter (CAP) for quantifying liver steatosis. Hepatol Int 2014; 8(4): 576-581.
[16] Sugimoto K, Moriyasu F, Oshiro H et al. The Role of Multiparametric US of the Liver for the Evaluation of Nonalcoholic Steatohepatitis. Radiology 2020; 296(3): 532-540.
[17] Ferraioli G, Roccarina D, Barr R G. Intersystem and Interoperator Agreement of US Attenuation Coefficient for Quantifying Liver Steatosis. Radiology 2024; 313(1): e240162.
[18] Karlas T, Petroff D, Sasso M et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 2017; 66(5): 1022-1030.
[19] Middleton M S, Heba E R, Hooker C A et al. Agreement Between Magnetic Resonance Imaging Proton Density Fat Fraction Measurements and Pathologist-Assigned Steatosis Grades of Liver Biopsies From Adults With Nonalcoholic Steatohepatitis. Gastroenterology 2017; 153(3): 753-761.
[20] Park C C, Nguyen P, Hernandez C et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152(3): 598-607.e592.
[21] Lee D H, Cho E J, Bae J S et al. Accuracy of Two-Dimensional Shear Wave Elastography and Attenuation Imaging for Evaluation of Patients With Nonalcoholic Steatohepatitis. Clin Gastroenterol Hepatol 2021; 19(4): 797-805.e797.
[22] Ogino Y, Wakui N, Nagai H, Igarashi Y. The ultrasound-guided attenuation parameter is useful in quantification of hepatic steatosis in non-alcoholic fatty liver disease. JGH Open 2021; 5(8): 947-952.
[23] McInnes M D F, Moher D, Thombs B D et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. Jama 2018; 319(4): 388-396.
[24] Whiting P F, Rutjes A W, Westwood M E et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155(8): 529-536.
[25] Guyatt G H, Oxman A D, Kunz R et al. GRADE guidelines: 7. Rating the quality of evidence--inconsistency. J Clin Epidemiol 2011; 64(12): 1294-1302.
[26] Idilman I S, Aniktar H, Idilman R et al. Hepatic Steatosis: Quantification by Proton Density Fat Fraction with MR Imaging versus Liver Biopsy. Radiology 2013; 267(3): 767-775.
[27] Imajo K, Kessoku T, Honda Y et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology 2016; 150(3): 626-637.e627.
[28] Paige J S, Bernstein G S, Heba E et al. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease. AJR Am J Roentgenol 2017; 208(5): W168-w177.
[29] Kim J W, Lee C H, Yang Z, Kim B H, Lee Y S, Kim K A. The spectrum of magnetic resonance imaging proton density fat fraction (MRI-PDFF), magnetic resonance spectroscopy (MRS), and two different histopathologic methods (artificial intelligence vs. pathologist) in quantifying hepatic steatosis. Quantitative Imaging in Medicine and Surgery 2022; 12(11): 5251-5262.
[30] Friedrich-Rust M, Romen D, Vermehren J et al. Acoustic radiation force impulse-imaging and transient elastography for non-invasive assessment of liver fibrosis and steatosis in NAFLD. European Journal of Radiology 2012; 81(3): E325-E331.
[31] Kumar M, Rastogi A, Singh T et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis: does etiology affect performance? J Gastroenterol Hepatol 2013; 28(7): 1194-1201.
[32] Chan W K, Nik Mustapha N R, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2014; 29(7): 1470-1476.
[33] de Lédinghen V, Wong G L H, Vergniol J et al. Controlled attenuation parameter for the diagnosis of steatosis in non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia) 2016; 31(4): 848-855.
[34] Lee H W, Park S Y, Kim S U et al. Discrimination of Nonalcoholic Steatohepatitis Using Transient Elastography in Patients with Nonalcoholic Fatty Liver Disease. PLoS One 2016; 11(6): e0157358.
[35] Naveau S, Voican C S, Lebrun A et al. Controlled attenuation parameter for diagnosing steatosis in bariatric surgery candidates with suspected nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2017; 29(9): 1022-1030.
[36] Garg H, Aggarwal S, Shalimar et al. Utility of transient elastography (fibroscan) and impact of bariatric surgery on nonalcoholic fatty liver disease (NAFLD) in morbidly obese patients. Surg Obes Relat Dis 2018; 14(1): 81-91.
[37] Runge J H, Smits L P, Verheij J et al. MR Spectroscopy-derived Proton Density Fat Fraction Is Superior to Controlled Attenuation Parameter for Detecting and Grading Hepatic Steatosis. Radiology 2018; 286(2): 547-556.
[38] Darweesh S K, Omar H, Medhat E et al. The clinical usefulness of elastography in the evaluation of nonalcoholic fatty liver disease patients: A biopsy-controlled study. Eur J Gastroenterol Hepatol 2019; 31(8): 1010-1016.
[39] Eddowes P J, Sasso M, Allison M et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019; 156(6): 1717-1730.
[40] Lee J I, Lee H W, Lee K S. Value of controlled attenuation parameter in fibrosis prediction in nonalcoholic steatohepatitis. World Journal of Gastroenterology 2019; 25(33): 4959-4969.
[41] Cardoso A C, Cravo C, Calçado F L et al. The performance of M and XL probes of FibroScan for the diagnosis of steatosis and fibrosis on a Brazilian nonalcoholic fatty liver disease cohort. Eur J Gastroenterol Hepatol 2020; 32(2): 231-238.
[42] Harry S, Lai L L, Nik Mustapha N R et al. Volumetric Liver Fat Fraction Determines Grade of Steatosis More Accurately Than Controlled Attenuation Parameter in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol 2020; 18(4): 945-953.e942.
[43] Shalimar, Kumar R, Rout G et al. Body mass index-based controlled attenuation parameter cut-offs for assessment of hepatic steatosis in non-alcoholic fatty liver disease. Indian J Gastroenterol 2020; 39(1): 32-41.
[44] Tada T, Iijima H, Kobayashi N et al. Usefulness of Attenuation Imaging with an Ultrasound Scanner for the Evaluation of Hepatic Steatosis. Ultrasound Med Biol 2019; 45(10): 2679-2687.
[45] Sugimoto K, Moriyasu F, Oshiro H et al. The Role of Multiparametric US of the Liver or the Evaluation of Nonalcoholic Steatohepatitis. Radiology 2020; 296(3): 532-540.
[46] Jang J K, Lee E S, Seo J W et al. Two-dimensional Shear-Wave Elastography and US Attenuation Imaging for Nonalcoholic Steatohepatitis Diagnosis: A Cross-sectional, Multicenter Study. Radiology 2022; 305(1): 118-126.
[47] Beyer C, Hutton C, Andersson A et al. Comparison between magnetic resonance and ultrasound-derived indicators of hepatic steatosis in a pooled NAFLD cohort. PLoS One 2021; 16(4): e0249491.
[48] Shao C X, Ye J, Dong Z et al. Steatosis grading consistency between controlled attenuation parameter and MRI-PDFF in monitoring metabolic associated fatty liver disease. Ther Adv Chronic Dis 2021; 12: 20406223211033119.
[49] Nogami A, Yoneda M, Iwaki M et al. Diagnostic comparison of vibration-controlled transient elastography and MRI techniques in overweight and obese patients with NAFLD. Sci Rep 2022; 12(1): 21925.
[50] Kuroda H, Abe T, Fujiwara Y, Nagasawa T, Takikawa Y. Diagnostic accuracy of ultrasound-guided attenuation parameter as a noninvasive test for steatosis in non-alcoholic fatty liver disease. J Med Ultrason (2001) 2021; 48(4): 471-480.
[51] Kuroda H, Fujiwara Y, Abe T et al. Two-dimensional shear wave elastography and ultrasound-guided attenuation parameter for progressive non-alcoholic steatohepatitis. PLoS One 2021; 16(4): e0249493.
[52] Huang Y L, Bian H, Zhu Y L et al. Quantitative Diagnosis of Nonalcoholic Fatty Liver Disease with Ultrasound Attenuation Imaging in a Biopsy-Proven Cohort. Acad Radiol 2023; 30 Suppl 1: S155-s163.
[53] Seo J W, Kim Y R, Jang J K et al. Transient elastography with controlled attenuation parameter versus twodimensional shear wave elastography with attenuation imaging for the evaluation of hepatic steatosis and fibrosis in NAFLD. Ultrasonography 2023; 42(3): 421-431.
[54] Dioguardi Burgio M, Castera L, Oufighou M et al. Prospective Comparison of Attenuation Imaging and Controlled Attenuation Parameter for Liver Steatosis Diagnosis in Patients With Nonalcoholic Fatty Liver Disease and Type 2 Diabetes. Clin Gastroenterol Hepatol 2024; 22(5): 1005-1013.e1027.
[55] Zhou Y, Nie M, Zhou H et al. Head-to-head comparison of three different US-based quantitative parameters for hepatic steatosis assessment: a prospective study. Abdom Radiol (NY) 2024.