Back to the list
Congress: ECR25
Poster Number: C-25563
Type: Poster: EPOS Radiologist (scientific)
DOI: 10.26044/ecr2025/C-25563
Authorblock: M. Koyun, Z. K. Cevval, B. Reis, B. Ece; Kastamonu/TR
Disclosures:
Mustafa Koyun: Nothing to disclose
Zeycan Kübra Cevval: Nothing to disclose
Bahadır Reis: Nothing to disclose
Bünyamin Ece: Nothing to disclose
Keywords: Artificial Intelligence, CT, Diagnostic procedure, Haemorrhage
References
  1. Van Asch, C. J., Luitse, M. J., Rinkel, G. J., van der Tweel, I., Algra, A., & Klijn, C. J. (2010). Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. The Lancet Neurology9(2), 167-176.
  2. Heit, J. J., Iv, M., & Wintermark, M. (2017). Imaging of intracranial hemorrhage. J Stroke 19 (1): 11–27.
  3. Ginat, D. T. (2020). Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology62, 335-340.
  4. Kidwell, C. S., Chalela, J. A., Saver, J. L., Starkman, S., Hill, M. D., Demchuk, A. M., ... & Warach, S. (2004). Comparison of MRI and CT for detection of acute intracerebral hemorrhage. Jama292(15), 1823-1830.
  5. Zahuranec, D. B., Lisabeth, L. D., Sánchez, B. N., Smith, M. A., Brown, D. L., Garcia, N. M., ... & Morgenstern, L. B. (2014). Intracerebral hemorrhage mortality is not changing despite declining incidence. Neurology82(24), 2180-2186.
  6. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. (2018). Artificial intelligence in radiology. Nature Reviews Cancer18(8), 500-510.
  7. Almeida LC, Farina EMJM, Kuriki PEA, Abdala N, Kitamura FC. Performance of ChatGPT on the Brazilian Radiology and Diagnostic Imaging and Mammography Board Examinations. Radiol Artif Intell. 2024;6(1).
  8. Lee, J. Y., Kim, J. S., Kim, T. Y., & Kim, Y. S. (2020). Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm. Scientific reports10(1), 20546.
  9. Yun TJ, Choi JW, Han M, Jung WS, Choi SH, Yoo RE, et al. Deep learning based automatic detection algorithm for acute intracranial haemorrhage: a pivotal randomized clinical trial. npj Digit Med. 2023;6(1):1–10.
  10. Dawud AM, Yurtkan K, Oztoprak H. Application of deep learning in neuroradiology: Brain haemorrhage classification using transfer learning. Comput Intell Neurosci. 2019;2019.
  11. Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A review of recent deep learning approaches in human-centered machine learning. Sensors21(7), 2514.
  12. Lewick T, Kumar M, Hong R, Wu W. Intracranial Hemorrhage Detection in CT Scans using Deep Learning. Proc - 2020 IEEE 6th Int Conf Big Data Comput Serv Appl BigDataService 2020. 2020 Aug 1;169–72.
  13. Voter AF, Meram E, Garrett JW, Yu JPJ. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Intracranial Hemorrhage. J Am Coll Radiol. 2021;18(8):1143–52.
  14. Rahsepar AA, Tavakoli N, Kim GHJ, Hassani C, Abtin F, Bedayat A. How AI Responds to Common Lung Cancer Questions: ChatGPT versus Google Bard. Radiology. 2023;307(5).
  15. Temperley HC, O’Sullivan NJ, Mac Curtain BM, Corr A, Meaney JF, Kelly ME, et al. Current applications and future potential of ChatGPT in radiology: A systematic review. J Med Imaging Radiat Oncol. 2024;68(3):257–64.
  16. Haver HL, Bahl M, Doo FX, Kamel PI, Parekh VS, Jeudy J, et al. Evaluation of Multimodal ChatGPT (GPT-4V) in Describing Mammography Image Features. Can Assoc Radiol J. 2024;
  17. Mert S, Stoerzer P, Brauer J, Fuchs B, Haas-Lützenberger EM, Demmer W, et al. Diagnostic power of ChatGPT 4 in distal radius fracture detection through wrist radiographs. Arch Orthop Trauma Surg. 2024;144(5):2461–7.
  18. Dehdab, R., Brendlin, A., Werner, S., Almansour, H., Gassenmaier, S., Brendel, J. M., ... & Afat, S. (2024). Evaluating ChatGPT-4V in chest CT diagnostics: a critical image interpretation assessment. Japanese Journal of Radiology, 1-10.
  19. Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell. 2020;2(2):e200029.
  20. Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6.
  21.  

GALLERY