Back to the list
Congress: ECR24
Poster Number: C-16469
Type: EPOS Radiographer (scientific)
DOI: 10.26044/ecr2024/C-16469
Authorblock: W. He, P. Xu, R. Xu, L. Huang, S-T. Feng, X. Li; Guangzhou , People's Republic of China/CN
Disclosures:
Weitao He: Nothing to disclose
Ping Xu: Nothing to disclose
Rulin Xu: Nothing to disclose
Li Huang: Nothing to disclose
Shi-Ting Feng: Nothing to disclose
Xuehua Li: Nothing to disclose
Keywords: Artificial Intelligence, Gastrointestinal tract, Radioprotection / Radiation dose, CT-Enterography, Colonography CT, Image registration, Inflammation
References
  1. Singh R, Digumarthy S R, Muse V V, et al. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT[J]. AJR Am J Roentgenol, 2020,214(3):566-573.
  2. Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT[J]. Eur Radiol, 2019,29(11):6163-6171.
  3. Lenfant M, Chevallier O, Comby P O, et al. Deep Learning Versus Iterative Reconstruction for CT Pulmonary Angiography in the Emergency Setting: Improved Image Quality and Reduced Radiation Dose[J]. Diagnostics (Basel), 2020,10(8).
  4. Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography[J]. Eur Radiol, 2019,29(10):5322-5329.
  5. Cheng Y, Han Y, Li J, et al. Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography[J]. Br J Radiol, 2021,94(1120):20201291.
  6. Tamura A, Mukaida E, Ota Y, et al. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection[J]. Br J Radiol, 2021,94(1123):20201357.
GALLERY