Back to the list
Congress: ECR25
Poster Number: C-16938
Type: Poster: EPOS Radiologist (scientific)
Authorblock: M. Woisetschlager1, T. Bjerner1, M. Lindblom1, C. Götz2, A. Hummer2, C. Salzlechner2, A. Spångeus1; 1Linköping/SE, 2Vienna/AT
Disclosures:
Mischa Woisetschlager: Nothing to disclose
Tomas Bjerner: Nothing to disclose
Maria Lindblom: Nothing to disclose
Christoph Götz: Employee: IB lab GmbH
Allan Hummer: Employee: IB lab GmbH
Christoph Salzlechner: Employee: IB lab GmbH
Anna Spångeus: Advisory Board: UCB Consultant: Giddeon Richter Speaker: Amgen, Tromp Medical
Keywords: Abdomen, Artificial Intelligence, Computer applications, CT, Computer Applications-General, Osteoporosis
Conclusion

This study validates the high accuracy, sensitivity, and specificity of an AI algorithm in detecting moderate to severe vertebral fractures in a geriatric cohort. The AI demonstrated particularly high accuracy in females and in scans using non-bone kernel protocols. These findings highlight the potential of AI-based solutions to enhance opportunistic screening for vertebral fractures, addressing a critical gap in osteoporosis management.

GALLERY