Congress:
ECR25
Poster Number:
C-22629
Type:
Poster: EPOS Radiologist (scientific)
Authorblock:
O. Tokur, O. Von Stackelberg, L. Dulz, B. K. Budai, Y. Kou, M. Debić, C. P. Heußel, H-U. Kauczor, M. O. Wielpütz; Heidelberg/DE
Disclosures:
Oğuzhan Tokur:
Nothing to disclose
Oyunbileg Von Stackelberg:
Nothing to disclose
Luca Dulz:
Nothing to disclose
Bettina Katalin Budai:
Nothing to disclose
Yao Kou:
Nothing to disclose
Manuel Debić:
Nothing to disclose
Claus Peter Heußel:
Nothing to disclose
Hans-Ulrich Kauczor:
Nothing to disclose
Mark O. Wielpütz:
Nothing to disclose
Keywords:
Thorax, CT, Comparative studies, Cancer
- Schreuder A, Scholten ET, van Ginneken B, Jacobs CJTlcr. Artificial intelligence for detection and characterization of pulmonary nodules in lung cancer CT screening: ready for practice? 2021;10(5):2378.
- MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. 2017;284(1):228-243.
- Gould MK, Tang T, Liu I-LA, et al. Recent trends in the identification of incidental pulmonary nodules. 2015;192(10):1208-1214.
- Callister M, Baldwin D, Akram A, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules: accredited by NICE. 2015;70(Suppl 2):ii1-ii54.
- Medicine NLSTRTJNEJo. Reduced lung-cancer mortality with low-dose computed tomographic screening. 2011;365(5):395-409.
- Khawaja A, Bartholmai BJ, Rajagopalan S, et al. Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification. 2020;12(6):3303.
- White CS, Dharaiya E, Campbell E, Boroczky LJR. The Vancouver lung cancer risk prediction model: assessment by using a subset of the National Lung Screening Trial cohort. 2017;283(1):264-272.
- McKee BJ, Regis SM, McKee AB, Flacke S, Wald CJJotACoR. Performance of ACR Lung-RADS in a clinical CT lung screening program. 2016;13(2):R25-R29.
- Pinsky PF, Gierada DS, Nath PH, Kazerooni E, Amorosa JJR. National lung screening trial: variability in nodule detection rates in chest CT studies. 2013;268(3):865-873.
- Setio AAA, Traverso A, De Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. 2017;42:1-13.
- Milam M, Koo CJCR. The current status and future of FDA-approved artificial intelligence tools in chest radiology in the United States. 2023;78(2):115-122.