
[1] D. Front, S. O. Schneck, A. Frankel, and E. Robinson, “Bone Metastases and Bone Pain in Breast Cancer: Are They Closely Associated?,” JAMA: The Journal of the American Medical Association, vol. 242, no. 16, pp. 1747–1748, 1979, doi: 10.1001/jama.1979.03300160027019.
[2] C. Suzuki et al., “Radiologic measurements of tumor response to treatment: practical approaches and limitations.,” Radiographics, vol. 28, no. 2, pp. 329–344, 2008, doi: 10.1148/rg.282075068.
[3] L. H. Schwartz et al., “RECIST 1.1 - Update and clarification: From the RECIST committee,” Eur J Cancer, vol. 62, no. May, pp. 132–137, 2016, doi: 10.1016/j.ejca.2016.03.081.
[4] E. A. Eisenhauer et al., “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).,” Eur J Cancer, vol. 45, no. 2, pp. 228–247, Jan. 2009, doi: 10.1016/j.ejca.2008.10.026.
[5] D. K. Woolf, A. R. Padhani, and A. Makris, “Assessing response to treatment of bone metastases from breast cancer: What should be the standard of care?” Annals of Oncology, vol. 26, no. 6, pp. 1048–1057, 2015, doi: 10.1093/annonc/mdu558.
[6] J. R. García, M. Simó, M. Soler, G. Pérez, S. López, and F. Lomeña, “Relative roles of bone scintigraphy and positron emission tomography in assessing file:///C:/Users/andre/Downloads/15243412.nbib the treatment response of bone metastases.,” Oct. 2005, Germany. doi: 10.1007/s00259-005-1843-7.
[7] J. R. Buscombe, B. Holloway, N. Roche, and E. Bombardieri, “Position of nuclear medicine modalities in the diagnostic work-up of breast cancer.,” The quarterly journal of nuclear medicine and molecular imagingâ¯: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of..., vol. 48, no. 2, pp. 109–118, Jun. 2004.
[8] A. I. Brenner, J. Koshy, J. Morey, C. Lin, and J. DiPoce, “The bone scan.,” Semin Nucl Med, vol. 42, no. 1, pp. 11–26, Jan. 2012, doi: 10.1053/j.semnuclmed.2011.07.005.
[9] U. Tateishi, C. Gamez, S. Dawood, H. W. D. Yeung, M. Cristofanilli, and H. A. Macapinlac, “Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT.,” Radiology, vol. 247, no. 1, pp. 189–196, Apr. 2008, doi: 10.1148/radiol.2471070567.
[10] V. Huyge et al., “Heterogeneity of metabolic response to systemic therapy in metastatic breast cancer patients.,” Clin Oncol (R Coll Radiol), vol. 22, no. 10, pp. 818–827, Dec. 2010, doi: 10.1016/j.clon.2010.05.021.
[11] K. M. Al-Muqbel, R. J. Yaghan, M. H. Al-Omari, L. A. Rousan, N. M. Dagher, and S. Al Bashir, “Clinical relevance of 18F-FDG-negative osteoblastic metastatic bone lesions noted on PET/CT in breast cancer patients,” Nucl Med Commun, vol. 37, no. 6, pp. 593–601, 2016, doi: 10.1097/MNM.0000000000000481.
[12] Y. Du, I. Cullum, T. M. Illidge, and P. J. Ell, “Fusion of metabolic function and morphology: Sequential [ 18F] fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer,” Journal of Clinical Oncology, vol. 25, no. 23, pp. 3440–3447, 2007, doi: 10.1200/JCO.2007.11.2854.
[13] A. R. Padhani and A. Gogbashian, “Bony metastases: Assessing response to therapy with whole-body diffusion MRI,” Cancer Imaging, vol. 11, no. SPEC. ISS. A, 2011, doi: 10.1102/1470-7330.2011.9034.
[14] F. Zugni et al., “The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer,” PLoS One, vol. 13, no. 10, pp. 1–16, 2018, doi: 10.1371/journal.pone.0205251.
[15] M. Kosmin, A. Makris, P. V. Joshi, M. L. Ah-See, D. Woolf, and A. R. Padhani, “The addition of whole-body magnetic resonance imaging to body computerised tomography alters treatment decisions in patients with metastatic breast cancer,” Eur J Cancer, vol. 77, pp. 109–116, 2017, doi: 10.1016/j.ejca.2017.03.001.
[16] G. Petralia et al., “Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses,” Radiologia Medica, vol. 124, no. 3, pp. 218–233, 2019, doi: 10.1007/s11547-018-0955-7.
[17] H. McKee et al., “Planetary Health and Radiology: Why We Should Care and What We Can Do,” Radiology, vol. 311, no. 1, pp. 1–14, 2024, doi: 10.1148/radiol.240219.
[18] J. Mariampillai and A. Rockall, “The green and sustainable radiology department,” Radiologie, vol. 63, no. Suppl 2, pp. 21–26, 2023, doi: 10.1007/s00117-023-01189-6.
[20] A. Roletto, M. Zanardo, G. R. Bonfitto, D. Catania, F. Sardanelli, and S. Zanoni, “The environmental impact of energy consumption and carbon emissions in radiology departments: a systematic review,” Dec. 01, 2024, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s41747-024-00424-6.
[21] A. Esmaeili, J. M. Twomey, M. R. Overcash, S. A. Soltani, C. McGuire, and K. Ali, “Scope for energy improvement for hospital imaging services in the USA,” J Health Serv Res Policy, vol. 20, no. 2, pp. 67–73, 2015, doi: 10.1177/1355819614554845.
[22] C. J. McCarthy, J. F. Gerstenmaier, A. C. O’ Neill, S. H. McEvoy, C. Hegarty, and E. J. Heffernan, “‘EcoRadiology’--pulling the plug on wasted energy in the radiology department.,” Acad Radiol, vol. 21, no. 12, pp. 1563–1566, Dec. 2014, doi: 10.1016/j.acra.2014.07.010.
[23] A. Chawla, D. Chinchure, L. O. Marchinkow, P. L. Munk, and W. C. G. Peh, “Greening the Radiology Department: Not a Big Mountain to Climb.,” Can Assoc Radiol J, vol. 68, no. 3, pp. 234–236, Aug. 2017, doi: 10.1016/j.carj.2016.10.009.
[24] A. Roletto, A. Savio, B. Marchi, and S. Zanoni, “Towards a Greener Radiology: A Comprehensive Life Cycle Assessment Framework for Diagnostic Imaging,” Environmental and Climate Technologies, vol. 28, no. 1, pp. 303–311, Jan. 2024, doi: 10.2478/rtuect-2024-0024.
[25] E. Picano, C. Mangia, and A. D’Andrea, “Climate Change, Carbon Dioxide Emissions, and Medical Imaging Contribution,” J Clin Med, vol. 12, no. 1, 2023, doi: 10.3390/jcm12010215.
[26] M. Brown, J. H. Schoen, J. Gross, R. A. Omary, and K. Hanneman, “Climate Change and Radiology: Impetus for Change and a Toolkit for Action,” Radiology, vol. 307, no. 4, 2023, doi: 10.1148/radiol.230229.
[27] S. McAlister et al., “The carbon footprint of hospital diagnostic imaging in Australia,” Lancet Reg Health West Pac, vol. 24, pp. 1–9, 2022, doi: 10.1016/j.lanwpc.2022.100459.
[28] M. Martin, A. Mohnke, G. M. Lewis, N. R. Dunnick, G. Keoleian, and K. E. Maturen, “Environmental Impacts of Abdominal Imaging: A Pilot Investigation,” Journal of the American College of Radiology, vol. 15, no. 10, pp. 1385–1393, 2018, doi: 10.1016/j.jacr.2018.07.015.
[29] F. Alshqaqeeq, C. McGuire, M. Overcash, K. Ali, and J. Twomey, “Choosing radiology imaging modalities to meet patient needs with lower environmental impact,” Resour Conserv Recycl, vol. 155, no. January, p. 104657, 2020, doi: 10.1016/j.resconrec.2019.104657.
[30] American College of Radiology, “ACR-Appropriateness-Criteria @ www.acr.org.” [Online]. Available: https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria
[31] R. Van de Walle, I. Lemahieu, and E. Achten, “Magnetic resonance imaging and the reduction of motion artifacts: review of the principles.,” Technol Health Care, vol. 5, no. 6, pp. 419–435, Dec. 1997.
[32] M. L. Wood and R. M. Henkelman, “MR image artifacts from periodic motion.,” Med Phys, vol. 12, no. 2, pp. 143–151, 1985, doi: 10.1118/1.595782.
[33] A. Orlacchio, “Esposizione medica 2 legge 101,” 2020.
[34] H. Shim, H. Hyun, and C. K. Kim, “Discrete Decreased Activity in the Lower Thoracic Spine on FDG PET/CT: Another Respiration-Related Artifact,” Clin Nucl Med, vol. 40, no. 5, 2015.
[35] I. Polycarpou, C. Tsoumpas, A. P. King, and P. K. Marsden, “Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data.,” Phys Med Biol, vol. 59, no. 3, pp. 697–713, Feb. 2014, doi: 10.1088/0031-9155/59/3/697.
[36] A. Caputo, Efficiency and decarbonization indicators in Italy and in the biggest European Countries – Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) Report – Edition 2023. 2023.
[37] H. Onishi et al., “Abdominal multi-detector row CT: effectiveness of determining contrast medium dose on basis of body surface area.,” Eur J Radiol, vol. 80, no. 3, pp. 643–647, Dec. 2011, doi: 10.1016/j.ejrad.2010.08.037.