Back to the list
Congress: ECR25
Poster Number: C-27524
Type: Poster: EPOS Radiologist (scientific)
Authorblock: S. Steinmetz, M. A. Abello Mercado, M. Kondova, A. Sanner, M. A. Brockmann, A. Othman; Mainz/DE
Disclosures:
Sebastian Steinmetz: Nothing to disclose
Mario Alberto Abello Mercado: Nothing to disclose
Mariya Kondova: Nothing to disclose
Antoine Sanner: Nothing to disclose
Marc A Brockmann: Nothing to disclose
Ahmed Othman: Nothing to disclose
Keywords: Head and neck, Neuroradiology brain, CT-Angiography, CT-High Resolution, Contrast agent-intravenous, Embolism / Thrombosis
References
  1. FerroJM, Canhao P, Stam J, Bousser MG, Barinagarrementeria F; ISCVT Investigators. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT).Stroke2004; 35(3): 664–670.
  2. WetzelSG, Kirsch E, Stock KW, Kolbe M, Kaim A, Radue EW. Cerebral veins: comparative study of CT venography with intraarterial digital subtraction angiography.AJNR Am J Neuroradiol1999; 20(2): 249–255.
  3. Ucar FA, Frenzel M, Kronfeld A, Altmann S, Sanner AP, Mercado MAA, Uphaus T, Brockmann MA, Othman AE. Improvement of Neurovascular Imaging Using Ultra-High-Resolution Computed Tomography Angiography. Clin Neuroradiol 2024;34(1):189-199. doi: 10.1007/s00062-023-01348-1
  4. Latina J, Shabani M, Kapoor K, Whelton SP, Trost JC, Sesso J, Demehri S, Mahesh M, Lima JAC, Arbab-Zadeh A. Ultra-High-Resolution Coronary CT Angiography for Assessment of Patients with Severe Coronary Artery Calcification: Initial Experience. Radiol Cardiothorac Imaging 2021;3(4):e210053. doi: 10.1148/ryct.2021210053
  5. Arndt C, Güttler F, Heinrich A. et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr 2021; 193 (03) 252-261
  6. Kataria B, Nilsson Althén J, Smedby Ö. et al. Image Quality and Potential Dose Reduction using Advanced Modeled Iterative Reconstruction (ADMIRE) in Abdominal CT – A Review. Radiat Prot Dosimetry 2021; 195: 177-187
  7. Ahn C, Heo C, Kim JH. Combined low-dose simulation and deep learning for CT denoising: application in ultra-low-dose chest CT. Proc SPIE Int Soc Opt Eng 2019;
  8. Cho YJ, Schoepf UJ, Silverman JR. et al. Iterative Image Reconstruction Techniques: Cardiothoracic Computed Tomography Applications. J Thorac Imaging 2014; 29 (04) 198-208
  9. Bodelle B, Wichmann JL, Scholtz JE. et al. Iterative Reconstruction Leads to Increased Subjective and Objective Image Quality in Cranial CT in Patients With Stroke. AJR Am J Roentgenol 2015; 205 (03) 618-622
  10. Greffier J, Frandon J, Si-Mohamed S, Dabli D, Hamard A, Belaouni A, Akessoul P, Besse F, Guiu B, Beregi JP. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data. Diagn Interv Imaging 2022;103(1):21-30. doi: 10.1016/j.diii.2021.08.001
  11. Greffier J, Dabli D, Frandon J, Hamard A, Belaouni A, Akessoul P, Fuamba Y, Le Roy J, Guiu B, Beregi JP. Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study. Med Phys 2021;48(10):5743-5755. doi: 10.1002/mp.15180
  12. Greffier J, Dabli D, Hamard A, Belaouni A, Akessoul P, Frandon J, Beregi JP. Effect of a new deep learning image reconstruction algorithm for abdominal computed tomography imaging on image quality and dose reduction compared with two iterative reconstruction algorithms: a phantom study. Quant Imaging Med Surg 2022;12(1):229-243. doi: 10.21037/qims-21-215
  13. Kojima T, Yamasaki Y, Matsuura Y, Mikayama R, Shirasaka T, Kondo M, Kamitani T, Kato T, Ishigami K, Yabuuchi H. The Feasibility of Deep Learning-Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation. J Comput Assist Tomogr 2024;48(1):77-84. doi: 10.1097/RCT.0000000000001525
  14. Otgonbaatar C, Ryu JK, Kim S, Seo JW, Shim H, Hwang DH. Improvement of depiction of the intracranial arteries on brain CT angiography using deep learning reconstruction. J Integr Neurosci 2021;20(4):967-976. doi: 10.31083/j.jin2004097
  15. Sun J, Li H, Li J, Yu T, Li M, Zhou Z, Peng Y. Improving the image quality of pediatric chest CT angiography with low radiation dose and contrast volume using deep learning image reconstruction. Quant Imaging Med Surg 2021;11(7):3051-3058. doi: 10.21037/qims-20-1158
  16. Zhang D, Mu C, Zhang X, Yan J, Xu M, Wang Y, Wang Y, Xue H, Chen Y, Jin Z. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction. BMC Med Imaging 2023;23(1):33. doi: 10.1186/s12880-023-00988-6
  17. Qu T, Guo Y, Li J, Cao L, Li Y, Chen L, Sun J, Lu X, Guo J. Iterative reconstruction vs deep learning image reconstruction: comparison of image quality and diagnostic accuracy of arterial stenosis in low-dose lower extremity CT angiography. Br J Radiol 2022;95(1140):20220196. doi: 10.1259/bjr.20220196
  18. Nakamura Y, Narita K, Higaki T, Akagi M, Honda Y, Awai K. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT. Eur Radiol 2021;31(7):4700-4709. doi: 10.1007/s00330-020-07566-2
GALLERY