Back to the list
Congress: ECR25
Poster Number: C-17749
Type: Poster: EPOS Radiologist (scientific)
Authorblock: R. Senkeev, M. Balbi, A. Veltri; Turin/IT
Disclosures:
Rouslan Senkeev: Nothing to disclose
Maurizio Balbi: Nothing to disclose
Andrea Veltri: Nothing to disclose
Keywords: Artificial Intelligence, Lung, Thorax, CT, Computer Applications-General, Patterns of Care
References
  • Mun SK, Wong KH, Lo SB, Li Y, Bayarsaikhan S. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28;7:614258. 
  • Kim S, Lee CK, Kim SS. Large Language Models: A Guide for Radiologists. Korean J Radiol. 2024 Feb;25(2):126-133. 
  • Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics; 2019.
  • Bressem KK, Adams LC, Gaudin RA, Tröltzsch D, Hamm B, Makowski MR, Schüle CY, Vahldiek JL, Niehues SM. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports. Bioinformatics. 2020 Nov;36(21):5255–5261. 
  • Dada A, Ufer TL, Kim M, Information extraction from weakly structured radiological reports with natural language queries. Eur Radiol. 2024 Jan;34(1):330-337. 
  •  

GALLERY