Congress:
ECR25
Poster Number:
C-17749
Type:
Poster: EPOS Radiologist (scientific)
Authorblock:
R. Senkeev, M. Balbi, A. Veltri; Turin/IT
Disclosures:
Rouslan Senkeev:
Nothing to disclose
Maurizio Balbi:
Nothing to disclose
Andrea Veltri:
Nothing to disclose
Keywords:
Artificial Intelligence, Lung, Thorax, CT, Computer Applications-General, Patterns of Care
- Mun SK, Wong KH, Lo SB, Li Y, Bayarsaikhan S. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28;7:614258.
- Kim S, Lee CK, Kim SS. Large Language Models: A Guide for Radiologists. Korean J Radiol. 2024 Feb;25(2):126-133.
- Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics; 2019.
- Bressem KK, Adams LC, Gaudin RA, Tröltzsch D, Hamm B, Makowski MR, Schüle CY, Vahldiek JL, Niehues SM. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports. Bioinformatics. 2020 Nov;36(21):5255–5261.
- Dada A, Ufer TL, Kim M, Information extraction from weakly structured radiological reports with natural language queries. Eur Radiol. 2024 Jan;34(1):330-337.