Back to the list
Congress: ECR25
Poster Number: C-16231
Type: Poster: EPOS Radiologist (educational)
Authorblock: M. Kancharla, S. R. Kankara, D. Jayanna, S. Suresh, A. R. Menezes, M. Maria, S. Reddy K; Bangalore/IN
Disclosures:
Meghana Kancharla: Nothing to disclose
Shreyas Reddy Kankara: Nothing to disclose
Dhanush Jayanna: Nothing to disclose
Siddhanth Suresh: Nothing to disclose
Anna Rachel Menezes: Nothing to disclose
Minnu Maria: Nothing to disclose
Shravan Reddy K: Nothing to disclose
Keywords: CNS, Neuroradiology brain, Vascular, MR, MR-Angiography, MR-Diffusion/Perfusion, Contrast agent-intravenous, Dilation, Normal variants, Infection, Inflammation, Neoplasia
References

1. POLLOCK H, HUTCHINGS M, WELLER RO, ZHANG ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat. 1997 Oct;191(Pt 3):337–46.

2. Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJM. Visualization of perivascular spaces andperforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014 May;49(5):307–13.

3. Agarwal N, Carare RO. Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes. Front Neurol. 2021 Jan 13;11:611485.

4. Kress BT, Iliff JJ, Xia M, Wang M, Wei H, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014 Dec;76(6):845–61.

5. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016 Sep;93:215–25.

6. Xu D, Zhou J, Mei H, Li H, Sun W, Xu H. Impediment of Cerebrospinal Fluid Drainage Through Glymphatic System in Glioma. Front Oncol. 2022 Jan 10;11:790821.

7. Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology. 2023 Feb;168(2):233–47.

8. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003 Oct;314(1):15-23. doi: 10.1007/s00441-003-0745-x. Epub 2003 Jul 22. PMID: 12883993.

9. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001 May 28;153(5):933-46. doi:10.1083/jcb.153.5.933. PMID: 11381080; PMCID: PMC2174323.

10. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014 Oct;45(10):3092–6.

11. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020 Mar;16(3):137–53.

12. Dyke JP, Xu HS, Verma A, Voss HU, Chazen JL. MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: Trends of subarachnoid and parenchymal distribution in healthy volunteers. Clin Imaging. 2020 Dec;68:1–6.

13. Naganawa S, Taoka T. The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging. Magn Reson Med Sci. 2020 Nov 27;21(1):182–94.

14. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017 Apr;35(4):172–8.

15. Zamora E, Zamora C. Perivascular Spaces: Neuroimaging, Microanatomy, Homeostasis, and Pathophysiologic Mechanisms of Disease. Neurographics. 2024 Apr 1;14(2):95–117.

 16. Zhou J, Lin J, Leung WT, et al. A basic understanding of mucopolysaccharidosis: Incidence, clinical features, diagnosis, and management. Intractable Rare Dis Res 2020;9:1–9. 10.5582/irdr.2020.01011

17. Matheus MG, Castillo M, Smith JK, et al. Brain MRI findings in patients with mucopolysaccharidosis types I and IIand mild clinical presentation. Neuroradiology 2004;46: 666–72. 10.1007/s00234-004-1215-1

18. Reichert R, Campos LG, Vairo F, et al. Neuroimaging findings in patients with mucopolysaccharidosis: what youreally need to know. Radiographics. 2016;36:1448–1462. 10.1148/rg.2016150168

19. Taccone A, Tortori Donati P, Marzoli A, et al. Mucopolysaccharidosis: thickening of dura mater at thecraniocervical junction and other CT/MRI findings. Pediatr Radiol 1993;23:349–52. 10.1007/BF02011954

20. Parsons VJ, Hughes DG, Wraith JE. Magnetic resonance imaging of the brain, neck and cervical spine in mild Hunter’s syndrome (mucopolysaccharidoses type II). Clin Radiol 1996;51:719–23. 10.1016/s0009-9260(96)80246-7

21. Decobert F, Grabar S, Merzoug V, et al. Unexplained mental retardation: is brain MRI useful? Pediatr Radiol 2005;35: 587–96. 10.1007/s00247-005-1406-x

22. Cramer SF. The melanocytic differentiation pathway in congenital melanocytic nevi: theoretical considerations.Pediatr Pathol 1988;8:253–65. 10.3109/155138188090 42969

23. Fox H, Emery JL, Goodbody RA, et al. NEUROCUTANEOUS MELANOSIS. Arch Dis Child 1964;39:508–16. 10.1136/adc.39.207.508

24. Barkovich AJ, Frieden IJ, Williams ML. MR of neurocutaneous melanosis. AJNR Am J Neuroradiol 1994;15:859–67.

25. Demirci A, Kawamura Y, Sze G, et al. MR of parenchymal neurocutaneous melanosis. AJNR Am J Neuroradiol 1995; 16:603–06.

26. Davalos D, Ryu JK, Merlini M, et al. Fibrinogen-induced perivascular microglial clustering is required for thedevelopment of axonal damage in neuroinflammation. Nat Commun 2012;3:1227. 10.1038/ncomms2230

27. Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 2011;9:409–16. 10.2174/157015911796557911

28. Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med 2018;8:a028936. 0.1101/cshperspect.a028936

29. Tanaka R, Iwasaki Y, Koprowski H. Ultrastructural studies of perivascular cuffing cells in multiple sclerosis brain. Am J Pathol 1975;81:467–78.

30. Matthews PM. Chronic inflammation in multiple sclerosis: seeing what was always there. Nat Rev Neurol 2019;15: 582–93. 10.1038/s41582-019-0240-y

31. Lisanti CJ, Asbach P, Bradley WG. JrThe ependymal “DotDash” sign: an MR imaging finding of early multiplesclerosis. AJNR Am J Neuroradiol 2005;26:2033–36.

32. Bruschi N, Boffa G, Inglese M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. Eur Radiol Exp 2020;4:59.10.1186/s41747-020-00186-x

33. Sinnecker T, Clarke MA, Meier D, et al.; MAGNIMS StudyGroup. Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol 2019;76:1446–56. 10.1001/jamaneurol.2019.2478

34. Grunewald J, Grutters JC, Arkema EV, et al. Sarcoidosis. Nat Rev Dis Primers 2019;5:45. 10.1038/s41572-019-0096-x

35.Urich H. Neurological manifestations of sarcoidosis.Practitioner 1969;202:632–36.

36. Mirfakhraee M, Crofford MJ, Guinto FC Jr, et al. VirchowRobin space: a path of spread in neurosarcoidosis. Radiology1986;158:715–20. 10.1148/radiology.158.3.3945745

37. Bathla G, Abdel-Wahed L, Agarwal A, et al. Vascular involvement in neurosarcoidosis: early experiences fromintracranial vessel wall imaging. Neurol Neuroimmunol Neuroinflamm 2021;8:e1063. 10.1212/NXI.000000000000106334349028.

38. Smith JK, Matheus MG, Castillo M. Imaging manifestations of neurosarcoidosis. AJR Am J Roentgenol 2004;182:289–95. 10.2214/ajr.182.2.1820289

39. Christoforidis GA, Spickler EM, Recio MV, et al. MR of CNS sarcoidosis: correlation of imaging features to clinicalsymptoms and response to treatment. AJNR Am J Neuroradiol 1999;20:655–69.

40. Zamora C, Hung SC, Tomingas C, et al. Engorgement of deep medullary veins in neurosarcoidosis: a common-yetunderrecognized cerebrovascular finding on SWI. AJNR Am J Neuroradiol 2018;39:2045–50. 10.3174/ajnr.A5783

41. Tobin WO, Guo Y, Krecke KN, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 2017;140:2415–25. 10.1093/brain/awx200

42. Kastrup O, van de Nes J, Gasser T, et al. Three cases of CLIPPERS: a serial clinical, laboratory and MRI follow-upstudy. J Neurol 2011;258:2140–46. 10.1007/s00415-011- 6071-4

43. Shetty D, Brahmbhatt S, Desai A, Bathla G, Mohan S, Gupta V, Soni N, Vibhute P, Agarwal A. Glial Fibrillary Acidic Protein Astrocytopathy: Review of Pathogenesis, Imaging Features, and Radiographic Mimics. AJNR Am J Neuroradiol. 2024 Oct 3;45(10):1394-1402. doi: 10.3174/ajnr.A8236. PMID: 38844367; PMCID: PMC11448981.

44. Suthiphosuwan S, Bharatha A, Hsu CC, et al. Tumefactive primary central nervous system vasculitis: imaging findings of a rare and underrecognized neuroinflammatory disease. AJNR Am J Neuroradiol 2020;41:2075–81. 10.3174/ajnr. A6736

45. Takahashi M, Miyauchi T, Kowada M. Computed tomography of Moyamoya disease: demonstration of occludedarteries and collateral vessels as important diagnostic signs. Radiology 1980;134:671–76. 10.1148/radiology.134.3.7355216

46. Yamada I, Himeno Y, Suzuki S, et al. Posterior circulation in moyamoya disease: angiographic study. Radiology 1995;197:239–46. 10.1148/radiology.197.1.7568830

47. Kuribara T, Mikami T, Komatsu K, et al. Prevalence of and risk factors for enlarged perivascular spaces in adult patients with Moyamoya disease. BMC Neurol 2017;17:149. 10.1186/s12883-017-0935-x

48. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69–82. 10.1016/j.ccr.2006.11.020

49. Seano G. Targeting the perivascular niche in brain tumors. Curr Opin Oncol 2018;30:54–60. 10.1097/CCO.0000000000000417

50. Baker GJ, Yadav VN, Motsch S, et al. Mechanisms of glioma formation: iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia 2014; 16:543–61. 10.1016/j.neo.2014.06.003

51. Murgai M, Ju W, Eason M, et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic nicheformation and metastasis. Nat Med 2017;23:1176–90.10.1038/nm.4400

52. Dasgupta A, Moraes FY, Rawal S, et al. Focal leptomeningeal disease with perivascular invasion in EGFRmutant non-small-cell lung cancer. AJNR Am J Neuroradiol 2020;41:1430–33. 10.3174/ajnr.A6640

53. Pezzella F, Ribatti D. Vascular co-option and vasculogenicmimicry mediate resistance to antiangiogenic strategies. Cancer Rep (Hoboken) 2020;5:e1318. 10.1002/cnr2.1318

54. Kleinschmidt-DeMasters BK, Damek DM. The imaging and neuropathological effects of bevacizumab (Avastin) in patients with leptomeningeal carcinomatosis. J Neurooncol 2010;96:375–84. 10.1007/s11060-009-9969-2

55. Iguchi Y, Mano K, Goto Y, et al. Miliary brain metastases from adenocarcinoma of the lung: MR imaging findingswith clinical and post-mortem histopathologic correlation. Neuroradiology 2007;49:35–39. 10.1007/s00234-006-0152-6

56. Ogawa M, Kurahashi K, Ebina A, et al. Miliary brain metastasis presenting with dementia: progression pattern ofcancer metastases in the cerebral cortex. Neuropathology2007;27:390–95. 10.1111/j.1440-1789.2007.00782.x

57. Takei H, Rouah E, Barrios R. Intravascular carcinomatosisof central nervous system due to metastatic inflammatorybreast cancer: a case report. Neuropathology 2015;35:456–61. 10.1111/neup.12206

58. Patsalides AD, Atac G, Hedge U, et al. Lymphomatoid granulomatosis: abnormalities of the brain at MR imaging.Radiology 2005;237:265–73. 10.1148/radiol.2371041087

59. Bhagavatula K, Scott TF. Magnetic resonance appearance of cerebral lymphomatoid granulomatosis. J Neuroimaging 1997;7:120–21. 10.1111/jon199772120

60. Tian D, Zhu X, Xue R, et al. Case 259: primary central nervous system lymphomatoid granulomatosis mimicking chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Radiology 2018;289:572–77. 10.1148/radiol.2018161475

61. Toh CH, Siow TY, Castillo M. Peritumoral brain edema in meningiomas may be related to glymphatic dysfunction. Front Neurosci 2021;15:674898. 10.3389/fnins.2021. 674898

62.  Chre´tien F, Lortholary O, Kansau I, et al. Pathogenesis of cerebral cryptococcus neoformans infection after fungemia. J Infect Dis 2002;186:522–30. 10.1086/341564

63. Vu K, Tham R, Uhrig JP, et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. mBio 2014;5:e01101–14. 10.1128/ mBio.01101-14

64. Lee WJ, Ryu YJ, Moon J, et al. Enlarged periventricular space and periventricular lesion extension on baseline brain MRI predicts poor neurological outcomes in cryptococcus meningoencephalitis. Sci Rep 2021;11:6446. 10.1038/s41598-021-85998-6

65. Miszkiel KA, Hall-Craggs MA, Miller RF, et al. Thespectrum of MRI findings in CNS cryptococcosis in AIDS.Clin Radiol 1996;51:842–50. 10.1016/s0009-9260(96)80080-8

66. Chen S, Chen X, Zhang Z, et al. MRI findings of cerebralcryptococcosis in immunocompetent patients. J Med ImagingRadiat Oncol 2011;55:52–57. 10.1111/j.1754-9485.2010.02229.x

67. Vilor-Tejedor N, Ciampa I, Operto G, et al; ALFA study. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimers Res Ther 2021;13:135. 10.1186/s13195-021-00878-5

68. Banerjee G, Kim HJ, Fox Z, et al. MRI-visible perivascular space location is associated with Alzheimer’s diseaseindependently of amyloid burden. Brain 2021;140:1107–16. 10.1093/brain/awx003

69. Kim HJ, Cho H, Park M, et al. MRI-visible perivascular spaces in the centrum semiovale are associated with brainamyloid deposition in patients with alzheimer disease-related cognitive impairment. AJNR Am J Neuroradiol 2021;42: 1231–38. 10.3174/ajnr.A7155

70. Charidimou A, Hong YT, Ja¨ger HR, et al. White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke 2015;46:1707– 09. 10.1161/STROKEAHA.115.009090

71. Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy andhypertensive arteriopathy. Neurology 2017;88:1157–64. 10.1212/WNL.0000000000003746

72. Charidimou A, Boulouis G, Frosch MP, et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: amulticentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol 2022;21:714–25. 10.1016/S1474-4422(22)00208-3

73. Chen HL, Chen PC, Lu CH, et al. Associations among cognitive functions, plasma DNA, and diffusion tensor image along the perivascular space (DTI-ALPS) in patients with Parkinson’s disease. Oxid Med Cell Longev 2021;2021:4034509. 10.1155/2021/4034509

74. Bogale TA, Faustini G, Longhena F, et al. Alpha-synuclein in the regulation of brain endothelial and perivascular cells: gaps and future perspectives. Front Immunol 2021;12: 611761. 10.3389/fimmu.2021.611761

75. Chung SJ, Yoo HS, Shin N-Y, et al. Perivascular spaces in the basal ganglia and long-term motor prognosis in newly diagnosed parkinson disease. Neurology 2021;96:e2121–31. 10.1212/WNL.0000000000011797

76. Lv W, Yue Y, Shen T, et al. Normal-sized basal ganglia perivascular space related to motor phenotype in Parkinson freezers. Aging (Albany NY) 2021;13:18912–23. 10.18632/ aging.203343

77. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014 Oct;45(10):3092–6.

GALLERY