Back to the list
Congress: ECR25
Poster Number: C-26740
Type: Poster: EPOS Radiologist (scientific)
DOI: 10.26044/ecr2025/C-26740
Authorblock: J. M. D. Fonseca1, S. Kolenda Zloić2, C. I. Ayogu3, K. Marole4, S. V. Moreira5, G. Capello Ingold6, M. H. Yoshikawa7, E. Finnegan8, M. A. Soato Ratti9; 1Gainesville, FL/US, 2Zagreb/HR, 3Liverpool/UK, 4Saint George/GD, 5Itaperuna RJ/BR, 6Pilar/AR, 7Boston/US, 8Dublin/IE, 9São Paulo/BR
Disclosures:
João Martins Da Fonseca: Nothing to disclose
Sanda Kolenda Zloić: Nothing to disclose
Chukwudi Isaac Ayogu: Nothing to disclose
Karabo Marole: Nothing to disclose
Sarah Verdan Moreira: Nothing to disclose
Gianluca Capello Ingold: Nothing to disclose
Marcia Harumy Yoshikawa: Nothing to disclose
Emma Finnegan: Nothing to disclose
Marco Aurélio Soato Ratti: Nothing to disclose
Keywords: Abdomen, Artificial Intelligence, Emergency, Ultrasound, Computer Applications-Detection, diagnosis, Trauma
References
  1. Armstrong LB, Mooney DP, Paltiel H, et al. Contrast enhanced ultrasound for the evaluation of blunt pediatric abdominal trauma. J Pediatr Surg. 2018;53(3):548-552. doi:10.1016/j.jpedsurg.2017.03.042
  2. Simel DL. Does This Adult Patient Have a Blunt Intra-abdominal Injury? JAMA. 2012;307(14):1517. doi:10.1001/jama.2012.422
  3. Lin Z, Li Z, Cao P, et al. Deep learning for emergency ascites diagnosis using ultrasonography images. J Appl Clin Med Phys. 2022;23(7). doi:10.1002/acm2.13695
  4. Lv F, Tang J, Luo Y, et al. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma. Radiol Med. 2011;116(7):1076-1082. doi:10.1007/s11547-011-0680-y
  5. Brown MA, Casola G, Sirlin CB, Patel NY, Hoyt DB. Blunt Abdominal Trauma: Screening US in 2,693 Patients. Radiology. 2001;218(2):352-358. doi:10.1148/radiology.218.2.r01fe42352
  6. Fang JF, Wong YC, Lin BC, Hsu YP, Chen MF. The CT Risk Factors for the Need of Operative Treatment in Initially Hemodynamically Stable Patients After Blunt Hepatic Trauma. The Journal of Trauma: Injury, Infection, and Critical Care. 2006;61(3):547-554. doi:10.1097/01.ta.0000196571.12389.ee
  7. Cheng CY, Chiu IM, Hsu MY, Pan HY, Tsai CM, Lin CHR. Deep Learning Assisted Detection of Abdominal Free Fluid in Morison’s Pouch During Focused Assessment With Sonography in Trauma. Front Med (Lausanne). 2021;8. doi:10.3389/fmed.2021.707437
  8. McCarter FD, Luchette FA, Molloy M, et al. Institutional and Individual Learning Curves for Focused Abdominal Ultrasound for Trauma. Ann Surg. 2000;231(5):689-700. doi:10.1097/00000658-200005000-00009
  9. Jeong D, Jeong W, Lee JH, Park SY. Use of Automated Machine Learning for Classifying Hemoperitoneum on Ultrasonographic Images of Morrison’s Pouch: A Multicenter Retrospective Study. J Clin Med. 2023;12(12):4043. doi:10.3390/jcm12124043
  10. Sjogren AR, Leo MM, Feldman J, Gwin JT. Image Segmentation and Machine Learning for Detection of Abdominal Free Fluid in Focused Assessment With Sonography for Trauma Examinations. Journal of Ultrasound in Medicine. 2016;35(11):2501-2509. doi:10.7863/ultra.15.11017
  11. Leo MM, Potter IY, Zahiri M, Vaziri A, Jung CF, Feldman JA. Using Deep Learning to Detect the Presence and Location of Hemoperitoneum on the Focused Assessment with Sonography in Trauma (FAST) Examination in Adults. J Digit Imaging. 2023;36(5):2035-2050. doi:10.1007/s10278-023-00845-6
  12. Savoia P, Jayanthi SK, Chammas MC. Focused Assessment with Sonography for Trauma (FAST). J Med Ultrasound. 2023;31(2):101-106. doi:10.4103/jmu.jmu_12_23
  13. Frank RA, Bossuyt PM, McInnes MDF. Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy: The PRISMA-DTA Statement. Radiology. 2018;289(2):313-314. doi:10.1148/radiol.2018180850
  14. Levy BE, Castle JT, Virodov A, et al. Artificial intelligence evaluation of focused assessment with sonography in trauma. Journal of Trauma and Acute Care Surgery. 2023;95(5):706-712. doi:10.1097/TA.0000000000004021
GALLERY