Back to the list
Congress: ECR25
Poster Number: C-21211
Type: Poster: EPOS Radiologist (scientific)
DOI: 10.26044/ecr2025/C-21211
Authorblock: C. R. Q. Lee, G. Lip; Aberdeen/UK
Disclosures:
Charlotte Ruo Qi Lee: Nothing to disclose
Gerald Lip: Nothing to disclose
Keywords: Breast, Mammography, MR, Ultrasound, Computer Applications-General, Technology assessment, Cancer, Multidisciplinary cancer care, Quality assurance, Sustainability
References

1. Schmidl B, Hütten T, Pigorsch S, Stögbauer F, Hoch CC, Hussain T, et al. Assessing the role of advanced artificial intelligence as a tool in multidisciplinary tumor board decision-making for primary head and neck cancer cases. Front Oncol. 2024 May 24;14:1353031. doi: 10.3389/fonc.2024.1353031. PMID: 38854718; PMCID: PMC11157509.

2. Bhayana R. Chatbots and large language models in radiology: A practical primer for clinical and research applications. Radiology. 2024;310(1). doi: 10.1148/radiol.232756.

3. Ke Y, Jin L, Elangovan K, Abdullah HR, Liu N, Sia AT, Soh CR, Tung JY, Ong JC, Ting DS. Development and testing of retrieval augmented generation in large language models--a case study report. arXiv preprint arXiv:2402.01733. 2024 Jan 29.

4. Doo FX, et al. Environmental sustainability and AI in radiology: A double-edged sword. Radiology. 2024;310(2). doi: 10.1148/radiol.232030.

5. Ligozat A-L, Lefevre J, Bugeau A, Combaz J. Unraveling the hidden environmental impacts of AI solutions for environment life cycle assessment of AI solutions. Sustainability. 2022;14:5172. doi: 10.3390/su14095172.

 

 

GALLERY