Back to the list
Congress: ECR25
Poster Number: C-14683
Type: Poster: EPOS Radiologist (scientific)
DOI: 10.26044/ecr2025/C-14683
Authorblock: C. D. Kulathilake1, C. Yang1, N. Dilhani1, T. Makino1, R. Iseki1, T. A. Walpola1, N-T. Hoang1, J. Uduphille2, A. Senoo1; 1Tokyo/JP, 2Peradeniya, Kandy/LK
Disclosures:
Chathura Darshana Kulathilake: Nothing to disclose
Chutian Yang: Nothing to disclose
Niluka Dilhani: Nothing to disclose
Tatsuya Makino: Nothing to disclose
Rinako Iseki: Nothing to disclose
Thishuli Anujaya Walpola: Nothing to disclose
Ngoc-Thanh Hoang: Nothing to disclose
Jeevani Uduphille: Nothing to disclose
Atsushi Senoo: Nothing to disclose
Keywords: Artificial Intelligence, CT, Computer Applications-Detection, diagnosis, Ischaemia / Infarction
References

[1] Singh R, Kaur S, Singh G., et al (2024) Optimizing early diagnosis by integrating multiple classifiers for predicting brain stroke and critical diseases. Sci Rep 14 28429

[2] Tanglay O, Cappelen-Smith C, Parsons MW, Cordato DJ (2024) Enhancing Stroke Recognition: A Comparative Analysis of Balance and Eyes–Face, Arms, Speech, Time (BE-FAST) and Face, Arms, Speech, Time (FAST) in Identifying Posterior Circulation Strokes. J. Clin Med, 13, 5912

[3] Illimoottil, Mathew, and Daniel G (2023) Recent Advances in Deep Learning and Medical Imaging for Head and Neck Cancer Treatment: MRI, CT, and PET Scans. Cancers vol. 15,13 3267

[4] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CIA (2017) Survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88

[5] Takahashi S, Sakaguchi Y, Kouno N, Takasawa K, Ishizu K, Akagi Y, Aoyama R, Teraya N, Bolatkan A, Shinkai N, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Sugiyama M, Hamamoto R (2024) Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review. J Med Syst. 2;48(1):84

[6] Russakovsky, Olga, Deng J, Hao S, Jonathan K, Satheesh S, Sean M, Huang Z et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115 (2015): 211-252

[7] Dosovitskiy A et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale. 

[8] Z. Liu et al (2021) Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. IEEE/CVF International Conference on Computer Vision (ICCV) Montreal Canada 9992-10002

[9] Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers and distillation through attention. International conference on machine learning 10347-10357

GALLERY