[1] Singh R, Kaur S, Singh G., et al (2024) Optimizing early diagnosis by integrating multiple classifiers for predicting brain stroke and critical diseases. Sci Rep 14 28429
[2] Tanglay O, Cappelen-Smith C, Parsons MW, Cordato DJ (2024) Enhancing Stroke Recognition: A Comparative Analysis of Balance and Eyes–Face, Arms, Speech, Time (BE-FAST) and Face, Arms, Speech, Time (FAST) in Identifying Posterior Circulation Strokes. J. Clin Med, 13, 5912
[3] Illimoottil, Mathew, and Daniel G (2023) Recent Advances in Deep Learning and Medical Imaging for Head and Neck Cancer Treatment: MRI, CT, and PET Scans. Cancers vol. 15,13 3267
[4] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CIA (2017) Survey on deep learning in medical image analysis. Med. Image Anal. 42:60–88
[5] Takahashi S, Sakaguchi Y, Kouno N, Takasawa K, Ishizu K, Akagi Y, Aoyama R, Teraya N, Bolatkan A, Shinkai N, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Sugiyama M, Hamamoto R (2024) Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review. J Med Syst. 2;48(1):84
[6] Russakovsky, Olga, Deng J, Hao S, Jonathan K, Satheesh S, Sean M, Huang Z et al (2015) Imagenet large scale visual recognition challenge. International journal of computer vision 115 (2015): 211-252
[7] Dosovitskiy A et al (2020) An image is worth 16x16 words: Transformers for image recognition at scale.
[8] Z. Liu et al (2021) Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. IEEE/CVF International Conference on Computer Vision (ICCV) Montreal Canada 9992-10002
[9] Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H (2021) Training data-efficient image transformers and distillation through attention. International conference on machine learning 10347-10357