Back to the list
Congress: ECR25
Poster Number: C-11988
Type: Poster: EPOS Radiologist (scientific)
Authorblock: R. Niemantsverdriet1, F. Hartmann1, M. P. A. Starmans1, M. Ronot2, R. L. Miclea3, V. Vilgrain2, M. Thomeer1, S. Klein1, LAI Consortium1; 1Rotterdam/NL, 2Paris/FR, 3Maastricht/NL
Disclosures:
Ruben Niemantsverdriet: Nothing to disclose
Frederik Hartmann: Nothing to disclose
Martijn Pieter Anton Starmans: Nothing to disclose
Maxime Ronot: Nothing to disclose
Razvan Lucian Miclea: Nothing to disclose
Valérie Vilgrain: Nothing to disclose
Maarten Thomeer: Nothing to disclose
Stefan Klein: Nothing to disclose
LAI Consortium: Nothing to disclose
Keywords: Liver, MR, Diagnostic procedure, Cancer
Conclusion

The LAI dataset will offer a valuable resource for developing and benchmarking AI algorithms aimed at automating the MRI-based diagnosis of solid-appearing liver lesions. The dataset and resulting algorithms hold the potential to enhance radiologists' decision-making and assist in patient referrals to specialised centres. 

GALLERY